최근 스마트폰과 PC 이용이 대중화됨 따라 웹상에 데이터가 기하급수적으로 축적되고 있다. 특히 SNS를 통해서 자유로운 의사소통은 물론 간편한 정보공유가 가능하여 다양한 의견들이 대량 데이터 형태로 축적된다. 이러한 데이터들을 분석하여 특정 주제에 대한 여론을 예견하는 빅데이터 기반의 여론분석기술이 주목받고 있다. 본 논문에서는 SNS 상에 표현된 사용자들의 의견을 수집하고 분석하여 대한민국 19대 대통령 후보자들에 대한 유권자들의 숨어있는 표심을 분석해 보았다. 이를 위해 19대 대선 후보에 관한 SNS상의 정보를 수집한 후 텍스트 마이닝 기법과 오피니언 마이닝 기법을 적용하여 언급 빈도수와 관련 키워드를 통한 평판 분석을 실시하였다. 본 논문에서 제시한 SNS를 통한 19대 대선후보의 평판분석 결과가 기존의 여론조사결과에 비하여 더 정확하게 예측했음을 확인할 수 있다.
최근 여론조사 분야에서 빅데이터 분석 기법이 널리 활용되고 있다. 기업에서는 최근 출시된 제품에 대한 선호도를 조사하기 위해 기존의 설문조사나 전문가의 의견을 단순 취합하는 것이 아니라, 온라인상에 존재하는 다양한 종류의 데이터를 수집하고 분석하여 제품에 대한 대중의 기호를 정확히 파악할 수 있는 방안이 필요하다. 본 연구에서는 빅데이터로부터 제품의 평판을 자동으로 찾아내는 텍스트 마이닝 방안을 제안하고, 소나타 자동차를 중심으로 제안 방안의 효율성을 평가하고 실험 결과를 자세히 분석한다.
2009년 말 아이폰의 국내출시부터 시작된 국내 스마트기기의 폭발적 증가세는 기존의 인터넷 커뮤니티와는 다른 개념의 새로운 인터넷 소통 공간의 탄생을 촉진시켰다. 사용자들이 매일 각종 스마트 기기로 SNS 공간에서 자신의 생각을 펼치면서, 대중의 생각을 파악하고 이를 자신의 목적에 사용하려고 하는 많은 이들이 SNS에 관심을 가지게 되었다. 그 중 정치인들은 여론의 흐름에 무척 민감한 만큼 SNS를 통해 국민의 요구와 의식을 읽으려고 하는데, 본 논문에서는 오피니언 마이닝을 통해 대표적인 SNS인 트위터에서 각 정치인들의 평판 및 정치인들 간에 순위를 간접적으로 알 수 있는 기법을 제안한다.
SNS의 증가로 기업의 평판이 영업과 주가에 영향을 미치고 있다는 다양한 연구가 발표되고 있으나, 디지털 상에서 기업 평판 측정 방법과 관련한 연구는 상대적으로 미흡하다. 본 연구는 사전 연구 집대성을 통해 기업의 디지털 평판 정보를 기업 정체성 정보와 기업 인지 정보로 구분하고, 정체성 평가를 위해 (1)제품 및 서비스 질 (2)고용환경 (3)기업 비전 (4)사회적 책임 (5)경영 성과 5개 항목을, 인지 평가를 위해 (1)호감(선(善)) (2)능력(능(能)) (3)진취성(흥(興)) (4)세련(격(格)) (5)무정함(권(權)) (6)비공식성 6개 항목으로 구분하여 평판 검색용 워드 아이템(Word Item)을 추출하고 설문을 통해 빈도 분석을 실시하여 기업의 평판 측정값을 계량화 하는 방법을 고안하였다. 또한 이의 검증을 위하여 상용 평판 서비스를 활용하여 국내 SI 3사의 평판을 측정하였다. 본 연구는 기업의 정체성과 인지(이미지나 소통)를 세분화하여 기업의 평판 측정을 시도한 최초의 연구이며, 빈도 분석을 통해 검증된 워드 아이템을 활용하여 평판 점수로 측정하는 산식을 제안함으로써 업무 적용성을 높였다는데 그 의의가 있다.
스마트폰 보급의 확산으로 제품 구매 시 웹 사이트 및 SNS를 이용하여 제품 리뷰를 참고하는 소비자들이 증가하고 있다. 전자 상거래 사이트의 제품 리뷰는 구매 예정자들에게 유용한 정보로 활용되곤 한다. 하지만 구매 예정자가 직접 제품에 대한 리뷰 데이터를 찾아 전체 내용을 일일이 읽고 분석해야하기 때문에 시간이 오래 걸릴뿐만 아니라 가공되지 않는 데이터가 줄 수 있는 정보는 한정적이다. 또한 이러한 리뷰들은 상품의 특징을 파악하기에도 어려움이 있다. 본 논문에서는 제품의 주요 이슈를 추출하고 주요 이슈에 대한 감성 분석과 감성 요약을 통해 제품 분석 및 평가를 제공하는 시스템을 설계 및 구현하였다. 이를 휴대폰 제품에 적용하여 구축한 시스템을 통해 소비자가 방대한 양의 제품의 리뷰 데이터를 분석할 필요 없이 제품의 주요 이슈와 가공된 분석 결과를 시각적으로 빠르게 제공받을 수 있음을 보였다.
Journal of the Korean Data and Information Science Society
/
제25권1호
/
pp.97-106
/
2014
빅 데이터 기술의 발전은 다변화된 현대 사회를 보다 정확하게 예측하고 효율적으로 작동하도록 정보를 제공하는 동시에 과거에는 불가능 했던 기술을 가능케 하였다. 이러한 빅 데이터 분석 기법은 국가 차원에서의 사회, 경제, 정치, 문화, 과학 기술 등 여러 분야에 활용될 수 있다. 빅 데이터 분석을 위해서는 먼저 데이터 마이닝 기술로 방대한 양의 데이터 속에서 가치 있는 정보를 찾는 것이 선행 되어야 하는데, 빅 데이터와 관련된 데이터 마이닝 기법으로는 텍스트 마이닝, 평판 분석, 군집 분석, 연관성 규칙 등이 있다. 본 논문에서는 데이터 마이닝 기법 중에서 많이 활용되고 있는 연관성 규칙의 평가 기준으로 코사인 순수 신뢰도를 제안한 후, Piatetsky-Shapiro가 제안한 흥미도 측도의 기준에 대한 충족여부를 점검하는 동시에 여러 가지 특성을 살펴보았다. 또한 예제를 통하여 고찰한 결과, 기존의 신뢰도와 코사인 유사성 측도는 모두 양의 값을 가지므로 연관성의 방향을 알 수 없어서 그 값만으로는 양의 연관성이 있는지 아니면 음의 연관성이 있는지를 알 수 없었다. 그러나 본 논문에서 제안한 코사인 순수 신뢰도는 그 부호에 의해 연관성 규칙의 방향을 알 수 있으므로 신뢰도와 코사인 유사성 측도가 가지고 있는 약점을 보완할 수 있는 측도라는 사실을 확인하였다.
본 연구에서는 질의를 기반으로 사용자의 감정상태를 예측하는 방법을 제안한다. 제안방법은 자극-감정 규칙베이스 구축, 규칙확률 값 기반 질의 랭킹, 질의 랭킹 기반 사용자 감정예측의 단계로 구성된다. 방법의 적절성을 검증하기 위하여 힘들다와 심심하다에 대한 결과로 사용자평가를 실시하였다. 힘들다의 결과에서는 힘들다 정도에 대한 점수가 높은 질의들을 지속적으로 검색하는 사용자들을 힘들다라고 판단할 수 있다고 분석되었다. 심심하다의 결과에서는 방법 간 유의미한 차이를 보이지 않았으나, 특정 개별질의의 지속적인 패턴을 분석하는 것이 좀 더 높은 점수를 얻은 것으로 평가되었다.
본 연구에서는 체중 감량을 위해 무분별한 다이어트 식품의 남용을 막고, 다이어트 보조 식품에 대한 정보를 제공하기 위해서 감성 분석을 활용하여 다이어트 보조 식품에 대한 온라인 후기를 분석하였다. 먼저, 다이어트 보조 식품을 그 특성에 따라 네 가지 종류로 분류하고 각 카테고리 별로 긍정 및 부정 점수를 계산하였다. 이를 위해 체중 감량에 대한 감성 사전을 다이어트 식품에 대한 후기를 텍스트 마이닝하여 구축하였다. 특히 부작용이 있는 식품에 대한 부정 점수에 가중치를 두기 위해서 WHO-ART 에서 정의한 부작용 용어에는 가중치를 두어 처리하였다. 분석 결과 단백질 보충 식품군이 긍정 점수가 가장 높게 나타났고, 이는 다이어트를 위한 목적 이외에도 운동을 전문적으로 하는 사람들에게 오랜기간 사용되어 왔기 때문인 것으로 해석된다. 또한 식욕 억제제 식품군이 긍정점수는 가장 낮고 부정 점수는 가장 높게 나타났는데, 이는 식욕억제제의 주성분인 펜타민에 의한 가능성이 클 것이라고 예측된다.
최근 여론조사 분야에서 데이터에 기반을 둔 분석 기법이 널리 활용되고 있다. 기업에서는 최근 출시된 제품에 대한 선호도를 조사하기 위해 기존의 설문조사나 전문가의 의견을 단순 취합하는 것이 아니라, 온라인상에 존재하는 다양한 종류의 데이터를 수집하고 분석하여 제품에 대한 대중의 기호를 정확히 파악할 수 있는 방안을 필요로 한다. 기존의 주요 방안에서는 먼저 해당 분야에 대한 감성사전을 구축한다. 전문가들은 수집된 텍스트 문서들로부터 빈도가 높은 단어들을 정리하여 긍정, 부정, 중립을 판단한다. 특정 제품의 선호를 판별하기 위해, 제품에 대한 사용 후기 글을 수집하여 문장을 추출하고, 감성사전을 이용하여 문장들의 긍정, 부정, 중립을 판단하여 최종적으로 긍정과 부정인 문장의 개수를 통해 제품에 대한 선호도를 측정한다. 그리고 제품에 대한 긍 부정 내용을 자동으로 요약하여 제공한다. 이것은 문장들의 감성점수를 산출하여, 긍정과 부정점수가 높은 문장들을 추출한다. 본 연구에서는 일반 대중이 생산한 문서 속에 숨겨져 있는 토픽을 추출하여 주어진 제품의 선호도를 조사하고, 토픽의 긍 부정 내용을 요약하여 보여주는 제품 평판 마이닝 알고리즘을 제안한다. 기존 방식과 다르게, 토픽을 활용하여 쉽고 빠르게 감성사전을 구축할 수 있으며 추출된 토픽을 정제하여 제품의 선호도와 요약 결과의 정확도를 높인다. 실험을 통해, K5, SM5, 아반떼 등의 국내에서 생산된 자동차의 수많은 후기 글들을 수집하였고, 실험 자동차의 긍 부정 비율, 긍 부정 내용 요약, 통계 검정을 실시하여 제안방안의 효용성을 입증하였다.
의료보험 혜택의 증가 및 베이비붐 세대의 노인 인구 증가 등에 기인하여 2020년에는 헬스케어로 소비되는 금액이 미국 GDP의 20%를 차지할 것으로 전망되고 있다. 이처럼 헬스케어 산업이 발전하면서 병원의 의료서비스 간 경쟁도 치열해지며, 의료서비스 품질을 관리하고자 하는 병원의 니즈가 증가해 왔다. 더불어 온라인 리뷰가 병원 품질을 예측하는 하나의 도구로 활용되면서 병원 온라인 리뷰에 대한 관심 또한 증대되었다. 소비자들은 의료서비스 제공자를 선택함에 있어서도 온라인 리뷰를 참고하는 경향을 보이며, 서비스를 제공받은 후 서비스 품질에 대해 온라인상에서 평가를 진행한다. 따라서 본 연구는 온라인 리뷰 사이트인 Yelp의 병원 리뷰를 중심으로 고객이 평가한 서비스 품질 유형의 감성 수준이 병원 평가에 미치는 영향을 파악하는 것을 목적으로 한다. 본 연구는 1차적으로 온라인에서 수집한 대량의 텍스트 데이터를 SERVQUAL 이론의 다섯 가지 서비스 품질 측정 지표로 구분한다. 다음으로 지표 별 감성 수준을 병원 단위로 도출한 뒤, 각 SERVQUAL 지표의 감성 수준이 병원 평가에 미치는 영향을 계량경제학적으로 분석한다. 또한, 병원의 네 가지 특성인 운영 목적(비영리 여부), 병원이 위치한 도시의 인구밀도, 보유 침대 수, 그리고 응급센터로 운영 여부가 병원 평가에 어떠한 상호작용 효과를 나타내는지 분석한다. 본 연구 결과를 통해 병원 경영 실무자들에게 온라인 상의병원 평판을 긍정적으로 형성해 나가려면 어떠한 서비스 품질을 더욱 집중 관리해야 하는지 방향을 제시해 줄 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.