• Title/Summary/Keyword: 평판형 집열기

Search Result 38, Processing Time 0.025 seconds

모듈화된 신형저가 고효율 평판형 태양열 집열기 개발

  • Lee, Dong-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.373-380
    • /
    • 2005
  • 알루미늄 재질의 찬넬을 흡열판으로 이용하는 평판형 태양열 집열기를 개발하였다. 이러한 흡열판은 찬넬 내부 전체로 전열매체가 흐르기 때문에 집열기의 열적성능을 향상시킬 것으로 예상되며, 모듈화되어 있어 제작 및 설치가 기존 흡열판보다 용이하다는 장점이 있다. 제작된 찬넬형 평판형 태양열 집열기에 대한 집열효율 시험을 수차례 수행하면서 성능을 개선시키고 있으며, 그 결과 기존 상용화된 집열기 수준의 우수한 열적성능을 갖는 것으로 나타났다. 알루미늄 재질 흡열판 외에 플라스틱 재질의 찬넬형 흡열판도 적용하였으며, 기타 실용화 및 성능 향상에 필요한 요소들에 대해 연구하였다.

  • PDF

Prediction Equation of Solar Collector Outlet Air Temperature (태양열(太陽熱) 집열기(集熱器) 출구온도(出口温度) 예측방정식(豫測方程式))

  • Moon, Soung Hong
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.48-53
    • /
    • 1985
  • 농산물 건조를 위하여 평판형 태양열 집열기를 이용할 경우 가열된 출구공기는 각종 농산물건조적온보다 일반적으로 고온이므로 이의 조절을 위한 출구공기 온도의 예측이 중요시 된다. 본 연구에서는 차원해석법(dimensional analysis)을 이용하여 평판형 집열기의 출구에서 나오는 가열된 공기의 온도를 예측하는 방법이 제시되었으며, 이 방법을 이용하여 집열기의 출구공기온도 예측방정식들이 유량별로 유도되었다. 이 방정식들로부터 구한 출구온도들은 실측한 값들과 잘 일치하였으며($R^2$=0.917~0.957) 또한 집열기의 효율을 나타내는 이론식이 출구공기온도 예측방정식으로 부터 직접 유도되었다.

  • PDF

Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids (나노유체를 이용한 평판형 태양열 집열기의 효율에 관한 연구)

  • Lee, Seung-Hyun;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.799-805
    • /
    • 2013
  • An analytical study is conducted to assess the efficiency of a flat-plate solar collector using nanofluids. The nondimensionalized 2D heat diffusion equation is solved by assuming a wavelength-independent extinction coefficient and intensity to obtain the analytical solution of the temperature distribution in the flat-plate solar collector. The dimensionless temperature distribution is investigated as functions of the volume fraction of the nanofluids, magnitude of heat loss, and collector's depth based on the analytical solution when using water-based single-walled carbon nanohorn (SWCNH) nanofluids as a working fluid. Finally, the efficiency of the flat-plate solar collector using the nanofluids is predicted and compared with that of the conventional solar collector. The results indicate that the efficiency of the nanofluid solar collector is better than that of the conventional solar collector under specific geometrical conditions.

Analysis of the Top Loss Coefficient for Flat Plate Collector in a Solar Air-Conditioning System during Winter (태양열 이용 냉난방 공조시스템중 평판형 집열기의 동계 상부 열손실 해석)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.;Kim, J.R.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.15-24
    • /
    • 1998
  • There are mainly 3 heat losses from solar collector; top, bottom, and edge heat loss. Usually edge heat loss is small so that could be neglected. Of the total thermal losses occurring in a flat plate solar collector, top loss heat losses are dominant. Therefore it is necessary to calculate the top loss coefficient accurately in order to find out performance of solar collector. The flat plate solar collector(regenerator in summer) used in this study was made for year-round all conditioning. In order to find out collector efficiency for heating in winter without a system change, outdoor experiment was done. The top loss coefficient of this collector was about 3 to $4.5W/m^2^{\circ}C$. Futhermore use of selective coating in trickling surface can improve a performance of flat plate solar collector.

  • PDF

Modeling Analysis for Thermal Performance of Solar Flat Plate Collector System Through a Year (평판형 태양열 집열기의 연중 열적 성능의 모델링 해석)

  • Kim, Gew Deok;Park, Bae Duck;Kim, Kyoung Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The monthly-average meteorological data, in particular, the monthly average daily terrestrial horizontal insolation are required for designing solar thermal energy systems. In this paper, the dynamic thermal performance of a flat plate solar collector system is numerically investigated through a year from the monthly average insolation data in Seoul. For a specified data set of solar collector system, the dynamic behaviors of total solar radiation on the tilted collector surfaces, heat loss from the collector system, useful energy and collector efficiency are analyzed from January to December by a mathematical simulation model. In addition, the monthly average daily total solar radiation, useful energy, and daily collector efficiencies through a year are estimated. The simulated results show that the average total radiation is highest in March and the useful energy is highest in October, while the total radiation and the collector efficiency are lowest in July.

A Study on the Setting Angle for the Flat-Plate Solar Collector' using Typical Meteorological Year Weather Data (평균년 표준기상데이터를 이용한 평판형 태양열 집열기 설치각 산정에 관한 연구)

  • 최정민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1084-1091
    • /
    • 2002
  • In general, flat-plate solar collectors are generally fixed in place at some angles. The most common method is to orient solar collectors toward the true south, where variations up to 15 degrees east or west are acceptable and the tiIt angle of the collectors is calculated from latitude and different heating applications. However, the best angle of flat-plate collectors depends upon whether the dominant load occurs in the winter, summer, or evenly all year. Moreover, this setting angle must consider the average insolation characteristics of the region exactly. In this study, the setting angle of flat-plate solar collectors is presented for Busan area by using domestic typical meteorological year weather data, so that the fixed flat-plate solar collectors must be set as quantitatively as possible.

Research on Effective Use of Radiation for Flat plate Type Collector (평판형 집열기에서 일사성분의 유효성에 관한 연구)

  • Choi, Sung-Woo;Chung, Sung-Sik;Ha, Jong-Yul;Kawasima, Yousuke
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2135-2140
    • /
    • 2004
  • This study represented experimental research on the flat plate solar collector. For the flat plate Solar system, it is sensitive of the Global radiation. In Actually, it suppose to be dependent on the direct radiation. Also, the existing method's factors are depend upon Global radiation in the flat plate collector system. therefore it needs which is depend upon direct radiation. In this experiment, the flat plate collector is used for obtaining the method's factors of the direct radiation. As a result, the correct $({\tau}{\alpha})_e$ is found out for practical value.

  • PDF

The Study of The Collector Efficiency Curve (태양열 집열기 효율곡선에 대한 연구)

  • Shin, J.C.
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.198-202
    • /
    • 2014
  • In the solar heat collection system, we can determine how the collector will perform under specific conditions from the efficiency curve. By understanding the basic principles which govern the operation, designers can maximize the output from the collector. Absorptance, transmission and the total heat transfer coefficient were introduced to induce this efficiency curve. Designers who can make use of the implicit information on the curve in this report will generate systems which obtain the best return from their client's investment.

Drying of Rough Rice by Solar Collectors (태양(太陽) 열(熱 )집열기(集熱機)를 이용(利用)한 벼의 건조(乾燥)에 관(關)한 연구(硏究))

  • Chang, Kyu-Seob;Kim, Man-Soo;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.264-272
    • /
    • 1979
  • The flat-plate and tubular soar collectors were designed and constructed for drying the rough rice, and the performance of the collectors and drying effect were investigated when rough rice was packed in grain bin connected to collectors. Average-monthly radiation on a horizontal surface based on bright sunshine in Daejeon area during 1978 was the highest as $16,814\;KJ/m^2{\cdot}day$ in May and the lowest as $4,254\;KJ/m^2{\cdot}day$ in December, and significane was not recognized between the calculated and recorded values. The thermal effciency of collectors were increased as radiation increased during drying period and the average thermal effciency of flat-plate and tubular collectors in 11 to 12 o'clock a.m were 28.12 and 16.75%, respectively. The average inlet temperature of grain bin at 12 o'clock was shown as 20.02 at control 40.5 at grain bin connected to tubular collector and $55.1^{\circ}C$ at grain bin connected to flat-plate collector. In 25 cm rough rice depth in grain bin, tim taken for drying from initial moisture content at 27.4 to decrease upto 17.0% (14.5 % on wet basis) were 32 in control, 18 in grain bin connected to tubular collector and 11 hrs to flat-plate collector, and grain depth influenced drying rate remarkably. In the view point of drying characteristics, drying pattern showed initially falling-rate to constant-rate period finally.

  • PDF

A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors (평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향)

  • 전문헌;윤석범;추교명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.145-153
    • /
    • 1984
  • In the present work, a computer simulation is performed employing Hottel-Whillier-Bliss model for thermal performance of solar collectors. The major collector parameters examined in the computer simulation are: number of transparent glass covers(N), thermal emissivity of the absorbing plate surface (.epsilon.$_{P}$), absorptivity of absorber plate (.alpha.$_{p}$), flow rate per unit area of collector (G), $L_{b}$ / $k_{b}$ of insulation material, tilt angle of collector (S), and solar insolation(I). By varying numerical values of the major collector parameters around their typical values, the corresponding variations in thermal efficiency curves are examined. In addition, an experimental investigation has been carried out with a slightly modified KAIST collector test loop under a real sun condition in order to compare with the simulation results, examine the applicability of the mathematical model of the collector thermal performance, and study the effect of variation of flow rate (G) on thermal efficiency and the range of optimum flow rate.e.