• Title/Summary/Keyword: 평판유동

Search Result 311, Processing Time 0.023 seconds

The Study of Heat Transfer on a Isothermal Circular Surface by an Impinging, Circular Water Jets with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐제트 충돌에 의한 일정 두께 하향 등온원형평판에서의 열전달 현상)

  • Eom, Yongkyoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.449-458
    • /
    • 2014
  • The heat transfer phenomenon was investigated in this study when a single round water jet with the low velocity and against the direction of gravity flows to the downward facing Isothermal of definite thickness circular plate. Experimental investigation is performed for a single round jet diameter 4mm, 6mm, and 8mm with the jet velocity 2.4m/s and jet fluid temperature of $24^{\circ}C$, varied the ratio of nozzle clearance/nozzle diameter (H/D)1, 2, 3, 6, and 8, on circular plate isothermal condition with $85^{\circ}C$. The local convection heat transfer coefficient distributions are analyzed based on the visualization of jet flow field. The effects of the diameter of Nozzle, the ratio of H/D and the ratio of nozzle diameter/circular plate diameter on heat transfer phenomenon are investigated. As a results of experiment is obtained correlation equation, $Nu_r=3.18Re_r^{0.55}Pr_r^{0.4}$.

A Numerical Study on the Flow Characteristics of Grouts in Jointed Rock (절리암반에서의 주입재 유동특성에 관한 수치해석적 연구)

  • 김문상;문현구
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.123-138
    • /
    • 1995
  • To study the grout flow in jointed rock, various nurser characteristics of grout in a single joint plane and two-dperorbed. The joint plane is described as a channel nets properties of grout are considered. To deal with various prob generator and i oint network generator are used. A loss of head due to friction in laminal flow is adopted to between the grout and joint wall. The grout flow is stopped, setting time. To consider this phenomenon, the idea of maxim From the results of numerical simulation on the single jai etration of grout is confirmed. The basic principles for the ation and the selection of the grout are presented. Correlation ant and grouting pressure is defined by analyzing the effects grout flow. Finally, the grout flow around a tunnel is simulate ins grouting operation for jointed rock mass.

  • PDF

Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit (사각형 및 원형 출구 Synthetic Jet의 유동 특성에 대한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am;Jung, Kyung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.585-595
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex but supplies fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is formed from slot center to end. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. Consequently, circular slot is a more suitable candidate for delaying flow separation. In order to derive the optimal shape of a circular slot exit, hole gap and diameter that affect the flow structure and flow control were analyzed. As a result, consider the hole diameter and gap of circular slot exit design, effectiveness of the flow control can be increased.

Study on Fluid Flow and Heat Transfer Characteristics in a Flat Heat Pipe (평판형 히트 파이프 내의 유체 유동 및 열전달 특성에 관한 연구)

  • Do, Kyu-Hyung;Kim, Sung Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2113-2118
    • /
    • 2007
  • In this study, a mathematical model for a thermal analysis of a flat heat pipe with a grooved wick structure is presented. The effects of the liquid-vapor interfacial shear stress, the contact angle, and the amount of liquid charge have been included in the proposed model. In particular, the axial variations of the wall temperature and the evaporation/condensation rates are considered by solving the one-dimensional conduction and the augmented Young-Laplace equations, respectively. In order to verify the model, the results obtained from the model are compared to existing experimental data.

  • PDF

Analysis of Impedance matching circuit for Planar-Type Inductively Coupled Plasma Device (평판형 유도 결합 플라즈마 장치에 대한 Alternate type Impedance matching 회로 분석)

  • Lee, Jong-Kyu;Kwon, D.C.;Yu, D.H.;Yoon, N.S.;Kim, J.H.;Shin, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1933-1935
    • /
    • 2004
  • 본 연구에서는 변압기형 플라즈마 전류 모델을 기초로 한 평판형 유도 결합 플라즈마 장치에 대한 회로를 분석하여 임피던스 매칭 특성을 조사하였다. 장치 임피던스는 collisional surface impedance를 기반으로 계산된 플라즈마 임피던스와 안테나 임피던스로 결정된다. 매칭 network에 사용된 회로는 Altcmatc-typc의 회로이고, 매칭 소자인 $C_T$$C_L$은 임피던스 매칭 조건을 이용하여 계산하였다. 완전 매칭의 경우에는 $C_T$$C_L$을 플라즈마 변수들의 함수로 표현하여 의존성을 분석하고, 불완전 매칭의 경우에는 반사파에 대한 반사계수, 반사율을 계산하였다.

  • PDF

The Flow Characteristics of ER Fluids According to the Electrode Shape of Two Parallel-Plate (평행평판의 전극형상에 따른 ER 유체의 유동특성 I)

  • Jang, S.C.;Yum, M.O.;Kim, D.T.;Kim, T.H.;Bae, T.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.207-212
    • /
    • 2001
  • Electro-Rheological(ER) fluid are suspensions which show an abrupt increase in rheological properties under electric fields. ER effects arise from electrostatic forces between the starch particles dispersed in the electrically insulating silicone oil, induced when an electric field is applied. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields. This paper presents performance analyses of four types of the two parallel-plate. Which have different electrode length and width but same electrode area. On the basis of the pressure drop and flow rate analysis. Four types of the two parallel-plate are designed and manufactured. Using ER fluid, it is possible to directly interface between electric signals and fluid power without moving parts.

  • PDF

Numerical Analysis of Drag-Reducing Turbulent Flow by Polymer Injection with Reynolds Stress Model (레이놀즈응력모델을 이용한 난류의 고분자물질 첨가 저항감소현상에 대한 수치해석)

  • Ko, Kang-Hoon;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • A modified low-Reynolds-number Reynolds stress model is developed for the calculation of drag-reducing turbulent flows induced by polymer injection. The results without polymer injection are compared with the results of direct numerical simulation to ensure the validity of the basic model. In case of drag reduction, profiles of mean velocity and Reynolds stress components, in two-dimensional channel flow, obtained with a proper value of viscosity ratio are presented and discussed. Computed mean velocity profile is in very good agreement with experimental data. And, the qualitative behavior of Reynolds stress components with the viscosity ratio is also reasonable.

Analysis of Particle Motion Impinging on a Flat Plate (평판에 충돌하는 미립자의 유동분석)

  • Kim, Jin;Kim, Byung-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • The particles velocity in the instantaneous flow field and velocity change of particles along the jet centerline for various particle diameter in a circular turbulent impingement jet are investigated by using particle image velocimetry(PIV) and an equation of particle motion simplified by terms of inertia forces, drag and gravitational force. The jet Reynolds number was 3300 and 8700, and glass beads of 30,58 and 100$\mu$m in diameter were used. The PIV results show that the direction and size of velocity depends not only on the number density of particle but also on the particle momentum. The results obtained form calculation suggest that the particle velocity near the first impingement region deviated from local air velocity, which accords well with the PIV results. The rebound height of particle increase with the particle diameter. In the second-impingement, particle velocities increased sluggishly with Re=3300 but particle velocities uniformed with Re=8700 in stagnation region.

Flow Rate-Pressure Drop Characteristics of Dispersive ER Fluid According to Change of Electric Field Strength in Clearance between Parallel Plates (평행평판 간극에서 전기장의 강도변화에 따른 분산계 ER유체의 유량-압력강하 특성)

  • 장성철;염만오;김도태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.78-83
    • /
    • 2003
  • Electro-rheological(ER) fluids are suspensions in which rheological properties show an abrupt change with variation of electric fields. We modeled the parallel-plates relating to ER-Valve system and yielded shear stress according to the strength of electric field. The purpose of the present study is to examine the flow characteristics of ER fluids according to the strength of electric field between parallel-plates. Then the steady relationship between pressure drop and flow rate of the ER fluids between parallel-plates under application of an electric fields was measured. The pressure drop and flow rates of ER fluids under the application of electric fields for steady flow were measured. For the experiment, we used the ER fluids, 35w% zeolite having hydrous particles and differential pressure gauge. This test reviewed experiment for the special changes of ER fluids in the steady flow condition.

Prediction of Asymmetric Turbulent Fluid Flow and Heat Transfer in the Parallel Plates (평행평판내 비대칭 난류유동과 열전달의 예측)

  • 오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.303-310
    • /
    • 1998
  • We report on the analytical results of examination of fully developed asymmetric flow and heat transfer between parallel plane plates. The asymmetry was introduced by roughening one of the plane while the other was left smooth. The integral method together with a turbulence model based on modified Prandtl's mixing length theory for the rough was used to determine the velocity distribution and friction. The temperature distrtibution is then predicted and heat transfer coefficients are calculated. The present paper shows that the heat transfer increases more than the friction factor for a given roughness structure. Generally the results show the strong effect of asymmetry on engineering parameters. Furthermore it is the roughness structure which influences the nature of asymmetry and heat transfer.

  • PDF