• Title/Summary/Keyword: 평블록

Search Result 29, Processing Time 0.02 seconds

A Hybrid Genetic Algorithm for Scheduling of the Panel Block Assembly Shop in Shipbuilding (선각 평블록 조립공장 일정계획을 위한 혼합 유전 알고리즘)

  • 하태룡;문치웅;주철민;박주철
    • Korean Management Science Review
    • /
    • v.17 no.1
    • /
    • pp.135-144
    • /
    • 2000
  • This paper describes a scheduling problem of the panel block assembly shop in a shipbuilding industry. Because the shipbuilding is a labor intensive industry the most important consideration in a panel block assembly shop is the workload balancing. which balances man-hour weight and welding length and so on. It should be determined assembly schedule and workstation considering a daily load balancing and a workstation load balancing simultaneously. To solve the problem we develop a hybrid genetic algorithm. Hybrid genetic algorithm proposed in this paper consists of two phases. The first phase uses the heuristic method to find a initial feasible solution which provides a useful information about optimal solution. The second phase proposes the genetic algorithm to derive the optimal solution with the initial population consisting of feasible solutions based on the initial solution. Finally we carried out computational experiments for this load balancing problem which indicate that developed method is effective for finding good solutions.

  • PDF

Weld Induced Deformation Control of Panel Blocks (평 블록의 용접변형 제어)

  • 이주성
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.205-209
    • /
    • 2000
  • This paper is concerned with development of the production-oriented structural design information system to predict the inaccuracy level of panel blocks and to consider the result at the structural design stage. Emphasis is placed on that the inaccuracy during production should likely be considered at the structural design stage to reduce the undesirable adjusting work and therefore to enhance the productivity. The primary goal of the present study is to consider the productivity and the efficient design at the same time for a high quality product of panel block. Usefulness of the developed information are illustrated through some application examples.

  • PDF

A Study of the Applicability of Cross-Section Method for Cut-Slope Stability Analysis (개착사면의 안정성 해석을 위한 횡단면 기법의 활용성 고찰)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Lee, Guen-Ho;Cho, Kye-Seong;Lee, Sang-Bae
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • Stability of cut-slope, the orientation and dimension of which are gradually changed, has been analyzed by employing the cross-section method capable of comprehensibly considering the lithological, structural and mechanical characteristics of slope rock. Lithological fragility is investigated by inspecting the drilled core logs and BIPS image has been taken to delineate the rock structure. Engineering properties of drilled-core including the joint shear strength have been also measured. Potential failure modes of cut-slope and failure-induced joints are identified by performing the stereographic projection analysis. Traces of potential failure-induced joints are drawn on the cross-section which depicts the excavated geometry of cut-slope. Considering the distribution of potential plane failure-induced joint traces blocks of plane failure mode are hypothetically formed. The stabilities and required reinforcements of plane failure blocks located at the different excavation depth have been calculated to confirm the applicability of the cross-section method for the optimum cut-slope design.

Control of Welding Distortion for Thin Panel Block Structure Using Plastic Counter-Deforming Method (소성 역변형법을 이용한 박판 평 블록의 용접변형 제어)

  • Kim, Sang-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.87-91
    • /
    • 2009
  • The welding distortion of a hull structure in the shipbuilding industry is inevitable at each assembly stage. The geometric inaccuracy caused by welding distortion tends to preclude the introduction of automation and mechanization and requires additional man-hours for adjustment work during the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method that can explicitly account for the influence of various factors on the welding distortion. The validity of this prediction method must also be clarified through experiments. For the purpose of reducing the weld-induced bending deflection, this paper proposes the plastic counter-deforming method (PCDM), which uses line heating as the optimum distortion control method. The validity of this method was substantiated by a number of numerical simulations and actual measurements.

Development of Welding Distortion Control Method for Thin Panel Block Structure(I) (박판 평 블록 구조의 용접변형 제어법 개발(I))

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.75-79
    • /
    • 2003
  • The welding distortion of a hull structure in the shipbuilding industry is inevitable at each assembly stage. This geometric inaccuracy caused by the welding distortion tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding distortion. The validity of the prediction method must be also clarified through experiments. For the purpose of reducing the weld-induced bending deflection, this paper proposes the plastic counter-deforming method (PCDM) using the line heating as the optimum distortion control method. The validity of this method has been substantiated by a number of numerical simulations and actual measurements.

HEVC TRANSFORM UNIT PRUNING METHOD (HEVC 고속 변환 크기 결정 방법)

  • Kang, Jang-Byung;Lee, Si-Woong;Kim, Jae-Gon;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.172-175
    • /
    • 2012
  • 본 논문은 HEVC (high efficiency video coding)의 복잡도 감소를 위한 고속 부호화 방법을 제안한다. 제안 방법은 마지막 0이 아닌 DCT 계수의 위치를 기준으로 블록의 평활성을 판단하고, 이에 따라 Transform Unit의 분할 여부를 빠르게 결정한다. 실험결과를 통해 미미한 0.5% BD-RATE 증가만으로 인코딩 타임을 약 20% 감소시킬 수 있음을 보인다.

  • PDF

Control of Welding Distortion for Thin Panel Block Structure using Mechanical Tensioning Method (기계적 인장법을 이용한 박판 평 블록의 용접변형 제어)

  • Kim, Sang-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.68-74
    • /
    • 2006
  • The welding distortion of a hull structure in the shipbuilding industry is inevitable at each assembly stage. This geometric inaccuracy caused by the welding distortion tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding distortion. The validity of the prediction method must be also clarified through experiments. For the purpose of reducing the weld-induced bending deflection, this paper proposes the mechanical tensioning method (MTM) as the optimum distortion control method. The validity of this method has been substantiated by a number of numerical simulations and actual measurements.

3GPP LTE 액세스 시스템 검증을 위한 단말 시뮬레이터 설계

  • Qi-Ping Yang;Won-Soo Cha;Jae-Woo Kim;Tae-Hyong Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1258-1261
    • /
    • 2008
  • 본 논문은 시스템의 안정성과 검증성, 설계 및 관리 용이성을 위해 SDL 언어 및 Pure-SDL 설계 접근기법을 이용하여 3GPP LTE 액세스 시스템 검증을 위한 단말 시뮬레이터를 설계 및 구현하였다. 설계된 시스템은 관리 효율성을 위해 블록 타입 및 공통 패키지 설계를 통한 다중 시스템 구조를 갖는다. 구현된 단말 시뮬레이터는 실제 3GPP LTE 액세스 시스템 검증에서 우수한 안정성을 보여주었다.

Analysis of Rock Slope Behavior Utilizing the Maximum Dip Vector of Discontinuity Plane (불연속면의 최대경사벡터를 활용한 사면거동해석)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.332-345
    • /
    • 2019
  • Maximum dip vector of individual joint plane, which can be uniquely defined on the hemispherical projection plane, has been established by considering its dip and dip direction. A new stereographic projection method for the rock slope analysis which employs the maximum dip vector can intuitively predict the failure modes of rock slope. Since the maximum dip vector is uniquely projected on the maximum dip point of the great circle, the sliding direction of discontinuity plane can be recognized directly. By utilizing the maximum dip vector of discontinuity both the plane sliding and toppling directions of corresponding blocks can be discerned intuitively. Especially, by allocating the area of high dip maximum dip vector which can form the flanks of sliding block the potentiality for the formation of virtual sliding block has been estimated. Also, the potentiality of forming the triangular-sectioned sliding block has been determined by considering the dip angle of joint plane the dip direction of which is nearly opposite to that of the slope face. Safety factors of the different-shaped blocks of triangular section has been estimated and compared to the safety factor of the most hazardous block of rectangular section. For the wedge analysis the direction of crossline of two intersecting joint planes, which has same attribute of the maximum dip vector, is used so that wedge failures zone can be superimposed on the stereographic projection surface in which plane and toppling failure areas are already lineated. In addition the maximum dip vector zone of wedge top face has been delineated to extract the wedge top face-forming joint planes the orientation of which provides the vital information for the analysis of mechanical behavior of wedge block.

Optimum Structural Design of Panel Block Considering the Productivity (생산성을 고려한 평블록의 최적 구조 설계)

  • Lee, Joo-Sung;Kim, Jong-Mun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.139-147
    • /
    • 2007
  • The ultimate goal of structural design is to find the optimal design results which satisfies both safety and economy at the same time. Optimum design has been studied for the last several decades and is being studied. in this study, an optimum algorithm which is based on the genetic algorithm has been applied to the multi-object problem to obtain the optimum solutions which minimizes structural weight and construction cost of panel blocks in ship structures at the same time. Mathematical problems are dealt at first to justify the reliability of the present optimum algorithm. And then the present method has been applied to the panel block model which can be found in ship structures. From the present findings it has been seen that the present optimum algorithm can reasonably give the optimum design results.