• Title/Summary/Keyword: 평면형 모노폴

Search Result 53, Processing Time 0.029 seconds

Design of Triple-Band Planar Monopole Antenna (삼중대역 평면형 모노폴 안테나 설계)

  • Lee, Dong-Cheol;Hwang, Ho-Soon;Chang, Jae-Sam;Lim, Jung-Sup;Lee, Mun-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.335-340
    • /
    • 2005
  • In this paper, the triple-band planar monopole antennas are designed for cellular communication, WiBro and WLAN(IEEE802.llb/g) communication and WLAN(IEEE802.lla) communication of 5GHz band. Various types of antennas are designed and examined experimentally as bended in the low and middle band radiation elements to decrease antennas size and increased radiation elements width to improve bandwidth. The proposed antennas are improved by 11% in antenna size with bended low-band radiation elements down and are extended by 30%$\sim$40% in bandwidth by increasing the width of the radiation element at 800MHz band.

  • PDF

Design of transistor oscillator for X-band application using a pair of L-shaped monopole slot resonator (한 쌍의 L-형 모노폴 슬롯 공진기를 이용한 X-밴드 트랜지스터 발진기 설계)

  • Lee, Yeong-min;Lee, Young-soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.107-114
    • /
    • 2021
  • In this paper, a planar transistor oscillator for X-band using a newly proposed L-shaped monopole slot resonator is proposed. For planar design, an L-shaped monopole slot with an open-end is used as a resonator for a transistor oscillator. As a result of the simulated design of the resonator in three stages, a high Q value of 1169.84 and a high insertion loss of 49.934 dB were identified. The results of the final design and manufactured oscillator measurements confirmed that the oscillation output is greater than 7 dBm and has good phase noise characteristics of -58 dBc/Hz at 100 kHz offset. The proposed oscillator is planar and has the advantage of being directly applicable to microwave integrated circuit technology. It also has the advantage of being able to reduce its size as it can only be implemented in microstrip form without additional devices such as metal cavities and tuning screws in 3D structures, as in the case of a DRO (dielectric resonance oscillator).

Design and Trend Analysis According to the Application Field of Monopole Antenna with Sleeve Structure (슬리브 구조를 갖는 모노폴 안테나의 활용분야에 따른 설계와 동향분석)

  • Kang, Sang-Won;Byeon, Mi-Kyeong;Lee, Shin-Hee;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.135-141
    • /
    • 2020
  • This paper summarizes the data of a monopole antenna with a sleeve structure that can be applied in various ways. Sleeve monopole antennas have broadband characteristics and are used for multi-frequency applications. The sleeve monopole antenna is composed of a vertical conductor, which is a radiator, and a sleeve having the same structure as a coaxial cable. The sleeve acts as a radiator and an open stub. The length of the sleeve should be 1/3~2/3 of the total length of the antenna. A monopole antenna having a sleeve structure is applicable to a vehicle wiper antenna. In addition, the case of applying this antenna to a broadband sleeve antenna using a loading coil, a broadband printed sleeve monopole antenna for an ISM band, a gap sleeve and a double sleeve, and a UWB planar monopole antenna using half cutting was summarized and analyzed in terms of structure and broadband.

Design and Fabrication of Dual-band Compact Monopole Antenna with Two Branches for Wi-Fi Mobile Applications (두개의 브랜치 라인을 갖는 와이파이 이동통신용 이중 대역 모노폴 안테나의 설계와 제작)

  • Jeong, Gye-Taek;Ju, Young-Rim;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • This letter describes a dual-band compact monopole antenna with two branches for Wi-Fi applications. The proposed antenna is based on a planar monopole design, and composed of two branches of radiating patches for dual-band operation. The ground size of the antenna matches the ground size of a typical hand-held cellular phone for improved compatibility with mobile phone printed circuit boards. The antenna is designed using a simulator and fabricated with optimized parameters. The fabricated antenna is measured at the lower and higher operating frequencies, and the return loss coefficient, gain, and radiation patterns are determined.

Design and Fabrication of A Dual-band Open-Ended Circular Ring MoNopole Antenna for WLAN Applications (이중 공진을 갖는 WLAN용 끝이 개방된 원형 링 모노폴 안테나의 설계와 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.987-994
    • /
    • 2013
  • In this paper, a dual-band open-ended circular ring moNopole antenna for WLAN(Wireless Local Area Networks) applications. The proposed antenna is based on a planar moNopole design, and composed of open-ended one circular ring of radiating patches for dual-band operation. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that effect antenna characteristics. Using the obtained parameters, the proposed antenna is fabricated. The fabricated antenna is measured at the operating frequencies(2.4-2.484 GHz, 5.15-5.825 GHz), and the return loss coefficient, gain, and radiation patterns are determined.

A Study on the Properties of UWB Circular Monopole Antenna with Folded Structure (접힌 구조의 UWB 원형 모노폴 안테나의 특성 연구)

  • Lim, Gye-Jae;Yoo, Young-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.147-151
    • /
    • 2015
  • In this paper, the performance variation of a planar circular monopole antenna is studied, when this antenna is fabricated to film type and installed in the space between case and PCB of UWB terminal. When the circular monopole part has the 'ㄷ' folded structure, the input impedance and return loss, bandwidth, radiation pattern of this antenna are simulated and measured. Then the performance variation is compared with conventional planar antenna. As the results, the folded type circular antenna is usable as a intenna of UWB communication terminal, because of the good return loss and radiation pattern performance in the 2.6 - 12 GHz including the UWB frequency band.

Design of a Planar Antenna with Monopole-like Radiation Pattern for On-Body Communications (수직 모노폴 방사패턴을 갖는 인체표면 통신용 평면형 안테나 설계)

  • Kwon, Jaekwang;Woo, Seungmin;Tak, Jinpil;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.365-373
    • /
    • 2015
  • In this paper, a planar antenna with monopole-like radiation pattern for on-body communications is proposed. The proposed antenna consists of three split-rings(SR) to generate a monopole-like radiation characteristic. To account for the on-body application, the proposed antenna is designed to have a low-profile. The antenna has an overall dimensions of $0.29{\lambda}_0{\times}0.29{\lambda}_0{\times}0.008{\lambda}_0$ at 5.8 GHz industrial, scientific, and medical(ISM) band(5.725~5.875 GHz). To verify the body effect, a two-thirds muscle equivalent semi solid phantom is fabricated and used to measure the antenna performance. The 10-dB return loss bandwidth is 280 MHz(5.68~5.96 GHz) and the measured peak gain is 1.91 dBi.

Small-sized Planar Spiral Monopole Antennas by Using Parasitic Elements (기생소자에 의한 소형 평면 맴돌이형 모노폴 안테나)

  • Lee Hyun-Kyu;Lee Taek-Kyung;Jang Won-Ho;Kang Yeon-Duk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.563-570
    • /
    • 2005
  • In this paper, a small-sized planar square-spiral monopole antenna is proposed by using parasitic elements. The Parasitic element is composed of a crossed strip and additional right-angle folded(L-type) stirps. And these parasitic elements are printed on a substrate which is the opposite side of a radiation element . When the parasitic elements are used, the size of the square-spiral monopole antenna is reduced by $32\%$ for the same operating frequency compared to the antenna without parasitic elements. The radiation pattern of the proposed antenna is nearly omni-directional in azimuth. The designed antenna can be used in the application of channel 12 digital mulimedia broadcasting(DMB) handset.

Design of Triple-Band Microstrip Antenna for WLAN/WiMAX (WLAN/WiMAX용 삼중대역 마이크로스트립 안테나 설계)

  • Oh, Mal-Goen;Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.213-217
    • /
    • 2014
  • In this paper, we designed monopole microstrip antenna for WLAN/WiMAX system. The monopole antenna is designed by FR-4 substrate with size is $30mm{\times}40mm$. The proposed antenna is based on a planar monopole design which cover WLAN and WiMAX frequency bands. To obtain the optimized parameters, we used the simulator, CST's Microwave Studio Program and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is designed. Thus the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are obtained for WLAN/WiMAX frequency bands.

An UWB Design of Plane Bow-Tie Monopole Antenna (평면형 보우타이 모노폴 안테나의 초광대역 설계)

  • Kim, Tae-Woo;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1212-1218
    • /
    • 2014
  • This paper proposes a planar bow-tie UWB antenna by modifying the ground patch of a reference bowtie-monopole antenna satisfying low band of UWB. The proposed antenna was implemented with five-angled ground patch to be operated in whole UWB band, while the reference antenna had a ground patch of half circle type. The measured return loss satisfies less than -10 dB in 3.1~10.6 GHz, except 4.9~5.8 GHz rejection band. The measured radiation pattern is almost the same with that of the monopole antenna. The radiation gain reduction is about 8 dB at rejection band.