• Title/Summary/Keyword: 평로

Search Result 2,553, Processing Time 0.036 seconds

Automatic Product Feature Extraction for Efficient Analysis of Product Reviews Using Term Statistics (효율적인 상품평 분석을 위한 어휘 통계 정보 기반 평가 항목 추출 시스템)

  • Lee, Woo-Chul;Lee, Hyun-Ah;Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.497-502
    • /
    • 2009
  • In this paper, we introduce an automatic product feature extracting system that improves the efficiency of product review analysis. Our system consists of 2 parts: a review collection and correction part and a product feature extraction part. The former part collects reviews from internet shopping malls and revises spoken style or ungrammatical sentences. In the latter part, product features that mean items that can be used as evaluation criteria like 'size' and 'style' for a skirt are automatically extracted by utilizing term statistics in reviews and web documents on the Internet. We choose nouns in reviews as candidates for product features, and calculate degree of association between candidate nouns and products by combining inner association degree and outer association degree. Inner association degree is calculated from noun frequency in reviews and outer association degree is calculated from co-occurrence frequency of a candidate noun and a product name in web documents. In evaluation results, our extraction method showed an average recall of 90%, which is better than the results of previous approaches.

Research for the opinion mining for the improvement of online shopping mall review grammatical errors (온라인쇼핑몰 상품평 문법적 오류 개선을 위한 오피니언 마이닝에 대한 연구)

  • Park, Se-Jeong;Hwang, Jae-Seung;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.160-163
    • /
    • 2015
  • 현대인들은 필요한 물건들을 직접 구매하러 갈 시간이 부족하기 때문에 온라인 쇼핑몰의 이용 빈도가 늘어가고 있으며 이에 따라 온라인 쇼핑몰이 성행하고 있다. 하지만 온라인 쇼핑몰에서 물건을 구매하는 것은 물건을 눈으로 확인할 수 없다는 문제점이 있기 때문에 상품평은 구매를 결정하는데 많은 영향을 준다. 현재 온라인 쇼핑몰에서 고객이 상품평을 통해 상품에 대한 정보를 파악하기 어렵기 때문에 이를 해결하기 위한 연구들이 진행되고 있다. 이러한 연구들로 상품평의 의견을 분석하기 위한 연구로 오피니언 마이닝이 사용되고 있는 추세이다. 그러나 지금까지의 연구는 문법적인 오류, 신조어와 같이 국어사전에 등재되어 있지 않은 단어들을 감성분석기가 올바르게 판단하지 못하기 때문에 분석의 신뢰도가 떨어진다는 문제점이 있다. 그래서 형태소 분석을 실시하기 전에 신조어 사전을 추가하여 Noisy-channel model을 적용하여 더욱 정확한 감성분석이 가능하도록 하였다. 이러한 과정을 통해 가공된 정보를 바탕으로 상품평을 보다 정확하게 분석할 수 있는 시스템을 제안하고자 한다.

  • PDF

A Rating System on Movie Reviews using the Emotion Feature and Kernel Model (감정자질과 커널모델을 이용한 영화평 평점 예측 시스템)

  • Xu, Xiang-Lan;Jeong, Hyoung-Il;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.37-41
    • /
    • 2011
  • 본 논문에서는 최근 많은 관심을 받고 있는 Opinion Mining으로서 사용자들의 자연어 형태의 영화평 문장을 분석하여 자동으로 평점을 예측하는 시스템을 제안한다. 제안 시스템은 영화평 분석에 적합한 어휘 자질, 감정 자질, 가치 자질 및 기타 자질들을 추출하고, 10점 척도의 영화평의 평점을 10개의 범주로 가정하여, 커널모델인 다중 범주 Support Vector Machine (SVM) 모델을 이용하여 높은 성능으로 영화평의 평점을 범주 분류한다.

  • PDF

A Product Review Analysis System using Rules and Statistical Information (규칙과 통계 정보에 기반을 둔 상품평 분석 시스템)

  • Kim, Minho;Choi, Hyunsoo;Kwon, Hyuk-Chul
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.257-259
    • /
    • 2013
  • 상품평은 구매 예정자의 의사 결정에 큰 도움을 준다. 그러나 하나의 상품에 관한 상품평의 수가 많고 의견도 다양하여 모든 상품평을 읽고 상품에 대한 직관적인 판단을 내리기가 어렵다. 본 논문에서는 하나의 상품에 대한 모든 상품평을 분석하고 각각의 속성별로 극성(긍정, 부정) 정보를 추출하여 구매 예정자에게 제공함으로써 해당 상품이 어떠한 평가를 받고 있는지 빠른 판단이 가능하게 한다. 한국어의 언어적 특징을 반영하여 속성별 어휘 자질을 추출하고 이를 바탕으로 상품의 속성별 극성을 판단한다. 또한, 기구축한 속성별 어휘 사전의 자료부족 문제로 말미암아 상품평을 분석할 수 없을 때는 전체 어휘의 극성정보를 이용하여 상품의 전체 극성을 판단한다.

확대 서평-김문환 지음 "인식과 초월", "연극평론의 기초"

  • Han, Sang-Cheol
    • The Korean Publising Journal, Monthly
    • /
    • s.94
    • /
    • pp.11-11
    • /
    • 1991
  • 김문환은 연극평론을 포함하여 모든 평론은 기술.해석.평가의 과정을 총괄하는 것이라고 규정하고 그러한 규정을 공연평에 적용하려 한다. 그의 공연평의 또하나의 특징은 무대상의 공연을 평할 때 가능한 한 그것의 대본과 프로그램을 읽고 참고하고 있는 점이다.

  • PDF

Sentiment Categorization of Korean Customer Reviews using CRFs (CRFs를 이용한 한국어 상품평의 감정 분류)

  • Shin, Junsoo;Lee, Juhoo;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.58-62
    • /
    • 2008
  • 인터넷 상에서 상품을 구입할 때 고려하는 부분 중의 하나가 상품평이다. 하지만 이러한 상품평들을 개인이 일일이 확인 하는데에는 상당한 시간이 소요된다. 이러한 문제점을 줄이기 위해서 본 논문에서는 인터넷 상의 상품평에 대한 의견을 긍정, 부정, 일반으로 나누는 시스템을 제안한다. 제안 시스템은 CRFs 기계학습모델을 기반으로 하며, 연결어미, 형태소 유니그램, 슬라이딩 윈도우 기법의 형태소 바이그램을 자질로 사용한다. 실험을 위해서 가격비교 사이트의 모니터 카테고리에서 561개의 상품평을 수집하였다. 이 중 465개의 상품평을 학습 문서로 사용하였고 96개의 상품평을 실험 문서로 사용하였다. 제안 시스템은 실험결과 79% 정도의 정확도를 보였다. 추가 실험으로 제안 시스템이 사람들과 얼마나 비슷한 성능을 보이는지 알아보기 위해서 카파 테스트를 실시하였다. 카파 테스트를 실시한 결과, 사람간의 카파 계수는 0.6415였으며, 제안 시스템과 사람 간의 카파 계수는 평균 0.5976이였다. 결론적으로 제안 시스템이 사람보다는 떨어지지만 유사한 정도의 성능을 보임을 알 수 있었다.

  • PDF

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.

A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary (반자동으로 구축된 의미 사전을 이용한 한국어 상품평 분석 시스템)

  • Myung, Jae-Seok;Lee, Dong-Joo;Lee, Sang-Goo
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.392-403
    • /
    • 2008
  • User reviews are valuable information that can be used for various purposes. In particular, the product reviews on online shopping sites are important information which can directly affect the purchasing decision of the customers. In this paper, we present our design and implementation of a system for summarizing the customer's opinion and the features of each product by analyzing reviews on a commercial shopping site. During the analysis process, several natural language processing(NLP) techniques and the semantic dictionary were used. The semantic dictionary contains vocabularies that are used to express product features and customer's opinions. And it was constructed in semi-automatic way with the help of the tool we implemented. Furthermore, we discuss how to handle the vocabularies that have different meanings according to the context. We analyzed 1796 reviews about 20 products of 2 categories collected from an actual shopping site and implemented a novel ranking system. We obtained 88.94% for precision and 47.92% for recall on extracting opinion expression, which means our system can be applicable for real use.

A Sentiment Analysis Algorithm for Automatic Product Reviews Classification in On-Line Shopping Mall (온라인 쇼핑몰의 상품평 자동분류를 위한 감성분석 알고리즘)

  • Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.19-33
    • /
    • 2009
  • With the continuously increasing volume of e-commerce transactions, it is now popular to buy some products and to evaluate them on the World Wide Web. The product reviews are very useful to customers because they can make better decisions based on the indirect experiences obtainable through the reviews. Product Reviews are results expressing customer's sentiments and thus are divided into positive reviews and negative ones. However, as the number of reviews in on-line shopping increases, it is inefficient or sometimes impossible for users to read all the relevant review documents. In this paper, we present a sentiment analysis algorithm for automatically classifying subjective opinions of customer's reviews using opinion mining technology. The proposed algorithm is to focus on product reviews of on-line shopping, and provides summarized results from large product review data by determining whether they are positive or negative. Additionally, this paper introduces an automatic review analysis system implemented based on the proposed algorithm, and also present the experiment results for verifying the efficiency of the algorithm.

  • PDF