• Title/Summary/Keyword: 평균 압축 강도

Search Result 280, Processing Time 0.024 seconds

A Study on the Calculation of Ternary Concrete Mixing using Bidirectional DNN Analysis (양방향 DNN 해석을 이용한 삼성분계 콘크리트의 배합 산정에 관한 연구)

  • Choi, Ju-Hee;Ko, Min-Sam;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.619-630
    • /
    • 2022
  • The concrete mix design and compressive strength evaluation are used as basic data for the durability of sustainable structures. However, the recent diversification of mixing factors has created difficulties in calculating the correct mixing factor or setting the reference value concrete mixing design. The purpose of this study is to design a predictive model of bidirectional analysis that calculates the mixing elements of ternary concrete using deep learning, one of the artificial intelligence techniques. For the DNN-based predictive model for calculating the concrete mixing factor, performance evaluation and comparison were performed using a total of 8 models with the number of layers and the number of hidden neurons as variables. The combination calculation result was output. As a result of the model's performance evaluation, an average error rate of about 1.423% for the concrete compressive strength factor was achieved. and an average MAPE error of 8.22% for the prediction of the ternary concrete mixing factor was satisfied. Through comparing the performance evaluation for each structure of the DNN model, the DNN5L-2048 model showed the highest performance for all compounding factors. Using the learned DNN model, the prediction of the ternary concrete formulation table with the required compressive strength of 30 and 50 MPa was carried out. The verification process through the expansion of the data set for learning and a comparison between the actual concrete mix table and the DNN model output concrete mix table is necessary.

Effect of CPR Foundation Reinforcement Assessed by Compressive Loading Tests (CPR 공법의 압축재하시험을 통한 기초지반의 보강효과)

  • Kang, Seong-Seung;Kim, Jung-Han;Noh, Jeongdu;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.211-222
    • /
    • 2019
  • This study evaluates the yield load and allowable bearing capacity of ground in compressive loading tests to confirm the effect of CPR foundation reinforcement. The average compressive strength of the injection materials was higher than the planned compressive strength. Standard penetration tests for each stratum showed that foundation reinforcement improved the average N values, thereby increasing the bearing capacity of the ground. Compressive loading tests on two CPR piles revealed that the total and net settlement due to the maximum load exceed that permissible for the CPR pile diameter. The yield load and allowable bearing capacity calculated by the settlement criterion and the load-settlement curves varied greatly with the method applied. Therefore, it seems to be necessary to determine the optimum value through comprehensive analysis after applying various yield load calculation methods.

Comparison of Shear Strength of Coarse Materials Measured in Large Direct Shear and Large Triaxial Shear Tests (대형 직접전단시험과 대형 삼축압축시험에 의한 조립재료의 전단강도 비교)

  • Seo, Minwoo;Kim, Bumjoo;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • Since the particle sizes of the coarse materials used in dam or harbor constructions are much larger than those of typical soils, it is desirable that large shear testing apparatuses are used when performing shear tests on the coarse materials to obtain as accurate results as possible. Two large-scale shear testing apparatuses, large direct shear testing apparatus and large triaxial shear testing apparatus, are commonly used. Currently in Korea, however, there have not been many cases in which shear tests were done using the large apparatus due to mainly difficulties in manufacturing, diffusing, and operating them. In present study, both large direct shear tests and large triaxial shear tests were performed on the coarse materials, which are used as dam fill materials, for 6 test cases in which particle sizes, specimen sizes, vertical pressure (confining pressure) conditions were little different, and then, the shear strength characteristics of the materials were compared with the two different shear tests. The test results showed that, by the Mohr-Coulomb failure criterion, overall the shear strength obtained by the large direct shear tests was larger than that by the large triaxial shear tests. Moreover, the shear strength under the normal stress of 1,000 kPa was about 10 to 70% larger for the large direct shear tests than for the large triaxial shear tests, revealing the larger differences in the coarse materials, compared to typical soils.

  • PDF

Comparison of Bond-Slip Behavior and Design Criteria of High Strength Lightweight Concrete with Compressive Strength 50 MPa and Unit Weight 16 kN/m3 (압축강도 50 MPa, 단위중량 16 kN/m3 고강도 경량 콘크리트 부착-슬립 거동의 설계기준과의 비교)

  • Lee, Dong-Kyun;Lee, Do-Kyung;Oh, Jun-Hwan;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.168-175
    • /
    • 2022
  • With the recent development of nanotechnology, its application in the field of construction materials is continuously increasing. However, until now, studies on the bond characteristics of concrete and rebar for applying high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of 16 kN/m3 to structural members are lacking. Therefore, in this paper, 81 specimens of high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of about 16 kN/m3 were fabricated and a direct pull-out tests were performed. The design code for the bond strength of ACI-408R and the experimental results are shown to be relatively similar, and as a result of the CEB-FIP and modified CMR bond behavior models through statistical analysis, it is shown to describe well on average.

Tensile Strength of Cement Mortar using Pitch-based Carbon Fiber Derived from Oil Residues (석유피치 재활용 탄소섬유를 혼입한 모르타르의 인장 특성)

  • Rhee, Inkyu;Lee, Jun Seok;Kim, Jin Hee;Kim, Yoong Ahm;Kim, Woo
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.20-28
    • /
    • 2017
  • The direct tensile strength of the mortar specimen containing pitch-based carbon fiber was ranged between 1/27~1/22 as compared to the average compressive strength of mortar. It was found that the direct tensile strength of the mortar containing the same amount of PAN-based carbon fiber was around 1/15. While the case of the control specimen without the carbon fiber was around 1/29. One the other hands, the flexural tensile strength of the mortar containing pitch-based carbon fibers was about 1/12 as compared to the average compressive strength. In case of the mortar specimen with PAN-based carbon fiber and control mortar were 1/10 and 1/13.5, respectively. The tensile performance of the mortar with pitch-based carbon fiber was found to be intermediate between control mortar and the reinforced mortar incorporated with the PAN-based carbon fiber.

Slenderness Ratio Distributions and Average Compressive Strengths of Stiffened Plates Used for In-Service Vessels (실선 보강판의 세장비 분포 및 평균 압축 강도 비교 연구)

  • Nam, Ji-Myung;Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.709-718
    • /
    • 2010
  • This paper deals with two contents: first, distributions of plate slenderness ratios, stiffened plate slenderness ratios, and stiffener slenderness ratios, which include dimensions and material variables of stiffened plates, of stiffened plates of large-sized in-service vessels, and, second, comparison of compressive strengths. The investigated vessels consist of 59 tankers, 49 bulkers, 28 product carriers, 15 container carriers, and 12 multi-purpose vessels. The tankers are ranged from handymax class to VLCC and larger than Suezmax class. The sizes of the bulkers are 20K to 200K deadweight. The maximum size of containers is less than 5000TEU class. Two parameters for normal distributions of the slenderness ratios (mean and standard deviation) are suggested and probable ranges of the slenderness ratios are also graphically presented. The ultimate strengths of the stiffened plates are presented using the various simplified formulas and nonlinear FEAs. As well, average compressive strength curves, which are necessary for the estimation of the hull girder moment capacities, are proposed. It is proved that formulas for stiffened plates in CSR overestimate slightly in overall average strain range. Mode5 formula (plate buckling mode) in CSR show unreasonably conservative results with respect to the ultimate strengths rather than post-ultimate average compressive strengths.

An Experimental Study on the Structural Behavior of Stub Columns with HSA800 High-strength Steels under Eccentric Loads (편심하중을 받는 건축구조용 고강도 강재(HSA800) 단주의 거동에 관한 실험적 연구)

  • Lee, Kangmin;Lee, Myung Jae;Oh, Young Suk;Oh, Keunyeong;Hong, Sungbin
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.289-297
    • /
    • 2014
  • Recently, high performance steels have been utilized to structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. In this paper, flexure-compression members with the high-strength steel were experimentally evaluated to satisfy the design criteria when stub columns fabricated with HSA800 steel were eccentrically loaded. This test was conducted on box-shaped and H-shaped steels stub columns with high-strength steel to verify the P-M interaction of members subjected to combined forces according to axial load ratios. The results showed that all specimens were satisfied the requirements of Korean Building Code(KBC2009) for using of structural members.

Body structure for the front impact of One-Box car (One-Box Car 충돌 대비 차체 구조)

  • 박규환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.19-24
    • /
    • 1991
  • 본 고에서는 자동차 안전대책중에서 One-box car의 전면충돌 안전대책에 대하여 개략적으로 소개하고자 한다. 1. 충돌기본식 1/2M$V^{2}$=F.S에서 에너지 흡수율이 frame의 변형 평균 하중과 차체 변형량에 좌우된다. 2. frame 형상은 굽힘형보다 압축형이 동일한 변형구간에서 월등한 충돌에너지를 흡수한다. 3. 압축형 frame의 에너지 흡수효과는 main-frame의 버팀강도가 e.a-frame의 변형 하중보다 강해야만 그 효과를 충분히 얻을 수 있다.

  • PDF

Analysis of Buildability and Strength Characteristics of Cement-based Composite Materials by Manufacturing Method of Laminated Specimens (적층시험체 제작 방식에 따른 시멘트계 복합재료의 적층성능 및 강도 특성 분석)

  • Eun-A Seo;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.9-15
    • /
    • 2023
  • In this study, the lamination performance and strength characteristics of cement-based composite materials according to the laminated specimens manufacturing method were analyzed. As a result of evaluating the buildability according to the layer height, the highest dimensional stability was shown when the layer height was 10 mm in all parts. The mold casting specimen and the printing-Z specimen showed the same compressive strength performance at the age of 28 days. On the other hand, the compressive strength at 28 day of printing-X specimen was the lowest at 71.72 MPa, and 8% lower than that of the mold casting specimen and the printing-Z specimen. The split tensile strength of the laminated specimen may show similar performance to that of the mold casting specimen, but the strength performance may decrease by more than 10% depending on the direction of the layer and the number of layers in the specimen. As a result of the interface analysis of the laminated specimen through X-ray CT analysis, it was confirmed that pores of a certain size were distributed along the interface of the layer.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.