• Title/Summary/Keyword: 평균하중

Search Result 450, Processing Time 0.032 seconds

Shearing Strength Properties of Bolted, Drift-Pinned Joints of the Larix Glulam - Effects of Fastener Diameter, Slenderness and End-distance on Strength Properties - (낙엽송 집성재의 Bolt, Drift Pin 접합부의 전단강도 성능 평가 - 접합구 직경, 세장비, 끝면거리가 강도에 미치는 영향 -)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.69-78
    • /
    • 2008
  • Shearing strength test in tension type was investigated to determine the shear resistance of bolt and drift-pin connection of domestic larix glulam. The specimen was connected with bolt and drift-pin in the inserted plate type, and only bolt in the side plate type. The diameter of bolt and drift-pin used in the experiment are 12, 16 and 20 mm. The hole of bolt was drilled at the end-distance 5 d and 7 d. Tension load was loaded in the direction parallel to grain. The shear resistance was evaluated according to end-distance through this, the yield load was compared with the experimental yield load, using Larsen's formula. The prototype design strength is based on the yield load of end-distance 7 d and the reduction factor of end-distance 5 d was calculated. The results were as follows. 1. The average of maximum load of drift-pin connection was higher by 3~30% at the inserted type than at bolt connection with increasing diameter. In bolt connection, the average of maximum load of the side type was 1.54~2.07 times higher than that of the inserted type. In the same diameter, the average of maximum load of end-distance 7 d was higher by 8~44% than that of 5 d. 2. The bearing stress was 1.16~1.41 times higher at the inserted connection than at drift-pin connection, and 1.37~1.86 times higher at 7 d than at 5 d. Also, when the slenderness ratio was below 7.5 at drift-pin connection and below 6.0 at inserted connection, the lateral capacity was good. 3. The ratio of the experimental yield load and the predicted yield load calculated by Larsen's formula proposed by Larsen was 0.80~1.10 at inserted connection, and 0.75~1.46 at side connection. 4. When the inserted bolt connection was based on the yield load of end-distance 7 d, the reduction factor was 0.89 at 12 mm connection, 0.93 at 16 mm and 0.85 at 20 mm. The reduction factor was 0.89 at 12 mm the inserted drift-pin connection, 0.93 at 16 mm, 0.93 at 20 mm. The reduction factor was 0.79 at the side connection of the 12 mm bolt connection and 0.80 at 16 mm.

Determination of Resonable Unit Snow Weight and Greatest Gust Speed for Design of Agricultural Structures and their Applications (농업시설의 설계하중 산정을 위한 적정 단위적설중량과 순간최대풍속의 결정 및 적용)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • Wind load or snow load, acting on agricultural structures is working more sensitive than any other load and therefore plays an important role in determination of design loads of agricultural structures. In this study, unit snow weight, greatest gust speed and depth of snow fall were analyzed and applied to determine the amount of frames. The unit snow weights were statistically classified and calculated in the basis of mean temperature and showed considerable differences between the unit snow weights at below and above -1$^{\circ}C$. Equations for estimating greatest gust speed with fastest wind speed were developed for inland and seaside districts. The calculated values from developed equations were little higher than those from the current equation in general. The difference between the depths of snow cover and snow fall, which shows the possibility of reduction of design loads under the adequate management. Design wind speed estimated by a modified equation suggested the amount of frames less than those by current one, and the depth of snow fall as a design snow depth suggested the amount of frames more than those of snow cover. Therefore, it is very important to select the adequate design values considering the characteristics of agricultural structures.

  • PDF

Evaluation of partial safety factors of Hudson formula for Tetrapod armor units constructed in Korea (국내에서 시공된 Tetrapod 피복재에 대한 Hudson 공식의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.345-356
    • /
    • 2009
  • Tetrapod has been used as the armor blocks of most rubble mound breakwaters constructed in Korea. The Hudson formula has been widely used in the design of breakwater armor blocks in Korea. In the present study, we calculate the load and resistance partial safety factors of the Hudson formula for Tetrapod armors. The partial safety factors were calculated for the typical breakwater cross-sections of 12 trade harbors and 8 coastal harbors in Korea. The mean and standard deviation of them were also calculated. The mean values were compared with the partial safety factors of US Army (2006). The load and resistance factors are slightly smaller and larger, respectively, than the US Army values. However, the overall safety factors obtained by multiplying the load and resistance factors are close to the US Army values. The result of the present study could be used as the basic data to propose authorized partial safety factors in the future.

A Study on the Load Bearing Characteristics Depending on Pile Construction Methods and Pile Load Test Methods Based on Case Analyses (사례분석에 기초한 말뚝시공법 및 재하시험방법에 따른 하중지지특성에 관한 연구)

  • Hong, Seok-Woo;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.5-21
    • /
    • 2012
  • In our country, in the case of traditional design of pile foundations, only a design depending on end bearing has been performed. However, through the load transfer measurement data that have been carried out for in-situ piles, it was known that skin frictional force was mobilized greatly. In this study, through the analysis of the load transfer test cases of driven steel pipe piles and large-diameter drilled shafts, load bearing aspects of pile foundation depending on pile construction methods and pile load test methods were established. The average sharing ratios of skin frictional force were independent of pile types, pile load test methods, relative pile lengths, pile diameters and soil types. Because the average sharing ratios were over 50%, the case pile foundations mostly behaved as a friction pile and the extremely partial case pile foundation behaved as a combined load bearing pile.

A Study on the Mechanical Properties of the Cretaceous Tuffs in Goheung Area. (고흥지역에 분포하는 백악기 응회암의 역학적 특성에 관한 연구)

  • Kim Hai-Gyoung;Koh Yeong-Koo;Oh Kang-Ho
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.273-285
    • /
    • 2004
  • The mechanical properties of the Cretaceous tuff distributed in the Goheung area were measured in the laboratory. Tuff (Goehung tuff and Palyeongsan welded tuff) in the study area is classified into vitric tuff with regard to its composition. The specific gravity, the dry density, the water content, the porosity and absorption ratio in tuffs of the study area are 2.51, $2.52(g/cm^2)$, 0.12($\%$), 4.51($\%$) and 1.91($\%$) in means, respectively. In the tuffs, dry densities are in inverse Proportion to Porosities, and absorption ratios are highly proportional with Porosities. The uniaxial compressive strengths(UCS) in the tuffs ranges from 80.4 to 208(MPa) and the average of the strength is 141.1(MPa). According to the engineering classification of intact rock (Deere & Miller, 1966), the tuffs are assigned to the high strength rocks. The point load strength index ($Is_a$) in axial test is 4.2(MPa) on the average, and the point load strength index ($Is_d$) in diametral test is 2.2(MPa) in mean, and the point load strength anisotrophic index($Ia_{(50)}$) by the ratio of $Is_a$ to $Is_d$ is 1.93. There is close linear correlation between the uniaxial compressive strength and point load strength index, and the equation representing the correlation is postulated as follows : UCS = 22 $Is_{(50)}$ +49 (MPa) (r=0.95). It is considered that this equation is a useful tool to estimate UCS for tuff in Goheung area.

Fracture formation and fracture Volume on Vertical Load by Blasting Demolition of Model Reinforced Concrete Pillars (철근 콘크리트 기둥 발파시 수직하중에 따른 파쇄형태 및 파쇄체적)

  • Park Hoon;Song Jung-Un;Kim Seung-Kon
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.45-56
    • /
    • 2005
  • In this study, fracture formation and fracture volume by blasting demolition of model reinforced concrete pillars were compared with various vertical load and influence of reinforced steel bar. The more vertical load increased, the more tensile cracks and vertical direction cracks produced. In vertical load of 2.0ton, tensile cracks on vertical direction were predominantly produced. Generally, the more vertical load increased, the more bending deformation of concrete steel bar decreased. As a result, vertical load was influenced fracture formation of concrete and bending deformation of reinforced steel bar. Reinforced steel bar was influenced fracture volume of concrete. According to vertical load and influence of reinforce steel bar by blasting demolition of reinforced concrete pillars, drilling and blasting pattern may be modified.

다양한 중량물 운반(carrying) 유형에서의 최대허용 하중에 대한 비교평가

  • 이관석;박희석;서치원
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.813-821
    • /
    • 1995
  • 본 연구의 목적은 심리육체적 방법(Psychophysical method)을 이용하여 다양한 중량물운반 유형에서의 최대허용하중을 구하는 것이며 이의 타당성을 생리학적 방법(physiological method)을 이용하여 검토하는 것이다. 또한, 인체측정과 근력측정 자료를 이용하여 각 운반유형에서의 최대허용 하중을 예측하는 모형을 개발하고자 한다. 본 연구에서는 네 가지의 운반유형(Front carrying, One-hand side carrying, Two-hands side carrying 그리고 Back carrying)과 두가지의 보행 속도 (50.0 그리고 79.2 m/min)를 주요변수로 8가지의 작업에 대해 무작위로 선택하여 각 작업에 대한 최대허용 하중을 시간과 경비의 감소측면에서 폭넓게 사용되고 있는 심리육체적 방법으로 구하였다. 피실험자는 운반작업의 경력이 있는 실제 작업자군(n=7)과 그렇지 않은 학생군(n=10)으로 구분하여 건강한 남성 피실험자를 대상으로 연구를 실시하였다. 주실험전에 인체측정과 근력측정을 실시하였다. 이후에 심리육체적 방법과 생리학적 방법을 실시간(on-line)으로 실시하였다. 연구결과로 학생군과 작업자군간의 신체조건은 뚜렷한 차이를 보이지 않았으나 근력은 작업자가 우월하였다. 심리육체적 방법을 사용하여 도출된 최대허용 하중은 학생군, 작업자군 모두 운반유형의 변화에 따라 유의함을 보였다.(학생군:p=.0001 작업자군:p=.0001). 반면에 속도의 변화는 유의하지 않았다(학생군:p=.7954 작업자군:p=.9231). 또한 학생군과 작업자군 모두 Back carrying에서 가증 큰 하중을 운반하였다(학생군:8.16kg 작업자군:12.9kg). 심박수를 이용한 생리학적 연구에서는 평균 심박수가 거의 100 이하를 유지하므로써 피실험자들이 8시간 작업기준으로 보아 무리가 없는 최대허용 하중을 결정하였음을 보였다. 또한 각 운반작업에 대한 최대허용 하중을 예측하는 회귀모형을 제시하였다.

  • PDF

Comparison of Gap Pressure in Opening Wedge High Tibial Osteotomy versus Compressive Strength of Allogenous Wedge Bone Blocks (경골 근위부 개방 절골술 시 개방부 압력과 동종 쐐기 골편의 최대압축하중 비교)

  • Yoon, Kyoung Ho;Kim, Jung Suk;Kwon, Yoo Beom;Kim, Eung Ju;Lee, Myeong-Kyu;Kim, Sang-Gyun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • Purpose: The aims of this study were (1) to investigate the relationship between the characteristics of allogenic bone block and the compressive strength of an allogenic bone block measured by biomechanical experiments, and (2) to compare the maximum pressure load of allogenic bone block with the gap pressure measured at the high tibial opening osteotomy. Materials and Methods: Ten patients who provided informed consent for gap pressure measurements during opening wedge high tibial osteotomy (OWHTO) were included. The gap pressures were measured at 1 mm intervals while opening the osteotomy site from 8 mm to 14 mm. Seventeen U-shaped allogenous wedge bone blocks were made from the femur, tibia, and humerus. The height, width, cross-sectional area, and cortex thickness of the bone blocks were measured, along with the maximum compressive load just before breakage. The relationship between these characteristics and the maximum pressure load of the bone blocks was evaluated. The gap pressures measured in OWHTO were compared with the maximum pressure loads of the allogenous wedge bone blocks to evaluate the possibility of inserting allogenous wedge bone blocks into the osteotomy site without a distractor in OWHTO. Results: The OWHTO gap pressure increased with increasing osteotomy site opening. The mean gap pressure, which occurred at a 14-mm opening, was 282±93 N; the maximum pressure was 427 N. The maximum pressure load of the allografts was 13,379±6,469 N (minimum, 5,868; maximum, 29,130 N) and was correlated significantly with the cortical bone thickness (correlation coefficient=0.693, p=0.002) and cross-sectional area (correlation coefficient=0.826, p<0.001). Depending on the sterilization method, the maximum pressure loads for the bone blocks were 13,406±5,928 N for freeze-dried and 13,348±7,449 N for fresh frozen. The maximum compressive load of the allogenous wedge bone blocks was 13.7-times greater than that in OWHTO opened to 14 mm (5,868 N vs. 427 N). Conclusion: The compressive strength of allogenous wedge bone blocks was sufficiently greater than the gap pressure in OWHTO. Therefore, allogenous wedge bone blocks can be inserted safely into the osteotomy site without a distractor.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

Evaluation of Dynamic Fracture Properties of Concrete (수치해석에 의한 콘크리트 동적 파괴특성의 평가)

  • 연정흠
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.383-390
    • /
    • 1998
  • 0.93m/sec의 평균속도는 변위제어 삼점휨 실험된 콘크리트 보의 하중-변위 측정결과를 선형탄성파괴역학모델과 가상균열모델에 기초한 유한요소법으로 분석하였다. 두 모델 모두 실험결과와 잘 일치하며, 균열성장길이가 약 60∼70㎜가 될 때까지 안전된 균열성장을 보이다 불안정한 균열성장에 의해 파손되었다. 선형탄성파괴역학모델에 의한 수치해석 결과 에너지해방률은 균열성장길이에 비례해서 증가하였으며, 최대값(202N/m)에 이르게 되면 일정한 값을 유지하였다. 가상균열모델에 기초한 수치해석결과 이 연구에 사용된 하중속도와 시험편의 크기에 대해 70㎜의 완전한 파괴진행대가 평성되었으며, 이는 기존의 정적 실험결과에 대한 수치해석 결과보다 상당히 작은 값이었다.

  • PDF