• 제목/요약/키워드: 평균제곱근

검색결과 427건 처리시간 0.026초

딥러닝 모형을 이용한 신호교차로 대기행렬길이 예측 (Predicting a Queue Length Using a Deep Learning Model at Signalized Intersections)

  • 나다혁;이상수;조근민;김호연
    • 한국ITS학회 논문지
    • /
    • 제20권6호
    • /
    • pp.26-36
    • /
    • 2021
  • 본 연구는 영상검지기에서 수집되는 정보를 활용하여 딥러닝 기반으로 대기행렬길이를 예측하는 모형을 개발하였다. 그리고 통계적 기법인 다중회귀 모형을 추정하여 평균절대오차와 평균제곱근오차의 두 지표를 이용하여 비교·평가하였다. 다중회귀분석 결과, 시간, 요일, 점유율, 버스 교통량이 유효한 변수로 도출되었고, 이 중에서 독립변수들의 종속변수에 대한 영향력은 점유율이 가장 큰 것으로 나타났다. 딥러닝 최적 모형은 은닉층이 4겹, Look Back이 6으로 결정되었고, 평균절대오차와 평균제곱근오차가 6.34와 8.99로 나타났다. 그리고 두 모형을 평가한 결과, 다중회귀 모형과 딥러닝 모형의 평균절대오차는 각각 13.65와 6.44, 평균제곱근오차는 각각 19.10과 9.11로 계산되었다. 이는 딥러닝 모형이 다중회귀 모형과 비교하여 평균절대오차가 52.8%, 평균제곱근오차는 52.3% 감소된 결과이다.

낮은 복잡도를 가지는 구간선형 모델 기반 렌즈음영왜곡 보상 알고리즘 (Low-Complexity Lens-shading Correction Algorithm based on Piece-wise Linear Model)

  • 이보라;박현상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.49-52
    • /
    • 2011
  • 본 논문에서는 구간선형 모델을 적용하여 낮은 복잡도를 가지는 LSC(Lens-Shading Correction) 알고리즘을 제안한다. 제안한 알고리즘은 각 화소와 렌즈 중심점으로부터 거리를 정수형으로 계산하고, 이 정수를 거리에 대한 LSC 이득값이 저장된 LUT(Look-Up Table)에 대한 주소로 적용하여, 입력 화소 값에 곱함으로써 LSC를 수행한다. 거리를 구하려면 제곱근 회로가 추가되어야 한다. LUT에 저장된 이득값은 원점으로부터의 거리에 대한 평균 이득값을 저장하고 있기 때문에, 제곱근 계산에 높은 정밀도를 할애하여도 LSC 보상된 영상의 화질에 미치는 영향은 높지 않으므로 정수형 제곱근 연산을 수행한다. 제곱근 계산은 구간 선형화하여 단지 덧셈과 쉬프트 연산만으로 제곱근 연산을 완료할 수 있도록 간략화 하였다. 제안한 알고리즘을 양산 중인 일반 카메라 모듈에 적용한 결과, 카메라모듈 제조업체의 LSC 평가 기준을 상회하는 수준으로 나타나며, 구현될 하드웨어 복잡도가 매우 낮아서 모바일 카메라 구현에 매우 적합하다.

  • PDF

개선된 뉴톤-랍손 역수 및 역제곱근 알고리즘 (An Improved Newton-Raphson's Reciprocal and Inverse Square Root Algorithm)

  • 조경연
    • 한국정보통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.46-55
    • /
    • 2007
  • 다음은 부동소수점 역수 및 역제곱근 계산에 많이 사용하는 뉴톤-랍손 알고리즘은 일정한 횟수의 곱셈을 반복하여 계산한다. 본 논문에서는 뉴톤-랍손 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 개선된 뉴톤-랍손 알고리즘을 제안한다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 유도하고, 여러 크기의 근사 테이블에서 단정도실수 및 배정도실수의 역수 및 역제곱근 계산에 필요한 평균 곱셈 횟수를 산출한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복 연산을 수행하므로 역수 및 역제곱근 계산기의 성능을 높일 수 있고 최적의 근사 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

국토지리정보원 VRS RTK 기준망 내부 측점 측량 정확도 평가 (Accuracy Evaluation of VRS RTK Surveys Inside the GPS CORS Network Operated by National Geographic Information Institute)

  • 김혜인;유기석;박관동;하지현
    • 한국측량학회지
    • /
    • 제26권2호
    • /
    • pp.139-147
    • /
    • 2008
  • GPS를 이용한 RTK(Real Time Kinematic) 측량의 경우 기준국으로부터 거리가 멀어짐에 따라 측위오차가 증가하는 문제점이 발생하게 된다. 이러한 문제점을 해결하기 위해 국토지리정보원은 네트워크 RTK의 일종인 VRS(Virtual Reference System) RTK 시스템을 구축하였다. 이 연구에서는 국토지리정보원에서 구축한 VRS RTK 시스템을 이용한 측량 정확도를 평가하였다. VRS 기준망 내부에 위치한 3등 기준점 50개소를 대상으로 VRS RTK 측량을 실시하고 그 결과를 3등 기준점 고시성과와 비교하는 방식으로 측위 정확도를 검증하였다. 또한 VRS RTK 측량과 동시에 단일 기준국을 이용한 일반 RTK 측량을 실시한 뒤 두 RTK 측량 방식의 측위오차를 비교하였다. 그 결과, VRS RTK 측량의 수평방향 평균제곱근오차는 평균 3.1cm, 일반 RTK 측량의 수평방향 평균제곱근오차는 평균 2.0cm로 1cm 정도의 편차만을 나타내는 것을 확인할 수 있었다. VRS RTK 측량의 수직방향 평균제곱근오차는 평균 6.8cm로 수평방향보다 크게 나타났다.

공간보간법의 매개변수 설정에 따른 평균제곱근 비교 및 평가 (Comparison and Evaluation of Root Mean Square for Parameter Settings of Spatial Interpolation Method)

  • 이형석
    • 한국지리정보학회지
    • /
    • 제13권3호
    • /
    • pp.29-41
    • /
    • 2010
  • 본 연구는 미측정점의 값을 모델링하기 위해 사용되는 여러 가지 공간보간방법들의 예측오차를 비교하고 정확성을 검증하였다. 동해안 해안 지역의 표고점을 대상으로 역거리가중법, 크리깅, 지역 다항식보간법, 방사기반함수의 공간보간법과 관련된 매개변수들을 동일한 조건하에서 실행하여 평균제곱근을 산출한 결과, 단순 크리깅 방법의 원형 모델이 가장 작은 값으로 나타났다. 래스터의 연산 결과, 방사기반함수의 다중방정식에 의한 예측 지도가 대상 지역의 불규칙삼각망 표현과 일치정도가 높았다. 또한 공간보간 실행시 선택된 조건하에서 제공되는 최적 파워값을 사용하는 것이 양호한 보간 결과를 얻을 수 있다.

낮은 이항 비율에 대한 신뢰구간 (Confidence Intervals for a tow Binomial Proportion)

  • 류제복;이승주
    • 응용통계연구
    • /
    • 제19권2호
    • /
    • pp.217-230
    • /
    • 2006
  • 본 연구에서는 낮은 이항비율에 관한 구간추정을 위해서 어떤 신뢰구간이 바람직한지를 살펴보았다. 실제 적으로 희귀질병, 특정 산업재해율, 그리 고 기생충에 관한 실태조사를 위해서 대규모 표본조사가 실시된다. 표본 규모가 크고, 0 < p ${\leq}$ 0.1인 상황에서 모비율 p의 추정에 바람직한 신뢰구간을 살펴보았다. 위의 조건에서 6가지의 신뢰구간들에 대해 평균포함확률과 평균제곱오차의 제곱근, 그리고 평균기대폭을 사용한 결과 Mid-p 신뢰 구간이 가장 바람직하고 다음으로 AC, score와 Jeffrey 신뢰 구간들이 적절한 것으로 밝혀졌다.

이항자료에 대한 예측구간 (On Prediction Intervals for Binomial Data)

  • 류제복
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.943-952
    • /
    • 2013
  • 신뢰구간 추정에 널리 사용되고 있는 Wald, Agresti-Coull, 그리고 베이지안 방법인 Jeffrey와 Bayes-Laplace를 예측구간에 적용하였다. 네 가지 방법의 수치적 비교를 위해서 포함확률, 평균포함확률, 평균제곱오차의 제곱근, 그리고 평균기대폭을 사용하였다. 비교결과 Wald 방법은 신뢰구간에서와 마찬가지로 예측구간에서도 바람직하지 않았고 신뢰구간에서 선호되던 Agresti-Coull 방법은 예측구간에서는 너무 보수적이라 적절치 않다. 반면에 Jeffrey와 Bayes-Laplace 방법은 적절하였고, 특히 Jeffrey 방법은 신뢰구간의 경우에서와 마찬가지로 예측구간에서도 바람직하였다.

이항자료에 대한 예측구간 (On prediction intervals for binomial data)

  • 류제복
    • 응용통계연구
    • /
    • 제34권4호
    • /
    • pp.579-588
    • /
    • 2021
  • 신뢰구간 추정에 널리 사용되고 있는 Wald, Agresti-Coull, 그리고 베이지안 방법인 Jeffrey와 Bayes-Laplace를 예측구간에 적용하였다. 네 가지 방법의 수치적 비교를 위해서 포함확률, 평균포함확률, 평균제곱오차의 제곱근, 그리고 평균기대폭을 사용하였다. 비교결과 Wald 방법은 신뢰구간에서와 마찬가지로 예측구간에서도 바람직하지 않았고 신뢰구간에서 선호되던 Agresti-Coull 방법은 예측구간에서는 너무 보수적이라 적절치 않다. 반면에 Jeffrey와 Bayes-Laplace 방법은 적절하였고, 특히 Jeffrey 방법은 신뢰구간의 경우에서와 마찬가지로 예측구간에서도 바람직하였다.

가변 시간 골드스미트 부동소수점 제곱근 계산기 (A Variable Latency Goldschmidt's Floating Point Number Square Root Computation)

  • 김성기;송홍복;조경연
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.188-198
    • /
    • 2005
  • 부동소수점 제곱근 계산에 많이 사용하는 골드스미트 제곱근 알고리즘은 곱셈을 반복하여 제곱근을 계산한다. 본 논문에서는 골드스미트 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. 'F'의 제곱근 계산은 초기값 $X_0=Y_0=T^2{\times}F,\;T=\frac{1}{\sqrt {F}}+e_t$에 대하여, $R_i=\frac{3-e_r-X_i}{2},\;X_{i+1}=X_i{\times}R^2_i,\;Y_{i+1}=Y_i{\times}R_i,\;i{\in}\{{0,1,2,{\ldots},n-1} }}'$을 반복한다 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 $e_r=2^{-p}$보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. $X_i=1{\pm}e_i$ 이면 $X_{i+1}$ = $1-e_{i+1}$ $e_{i+1} {\frac{3e^2_i}{4}{\mp}\frac{e^3_i}} $ +4$e_{r}$이다. $|X_i-1|$ < $2^{\frac{-p+2}{2}}$이면, $e_{i+1}$ < $8e_{r}$ 이 부동소수점으로 표현할 수 있는 최소값보다 작게 되며, $\sqrt{F}$ {\fallingdotseq}\frac{Y_{i+1}}{T}}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블 ($T=\frac{1}{\sqrt{F}}+e_i$)에서 단정도실수 및 배정도실수의 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그래픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.

가변 시간 뉴톤-랍손 부동소수점 역수 제곱근 계산기 (A Variable Latency Newton-Raphson's Floating Point Number Reciprocal Square Root Computation)

  • 김성기;조경연
    • 정보처리학회논문지A
    • /
    • 제12A권5호
    • /
    • pp.413-420
    • /
    • 2005
  • 부동소수점 제곱근 계산에 많이 사용하는 뉴톤-랍손 부동소수점 역수 제곱근 알고리즘은 일정한 횟수의 곱셈을 반복하여 역수 제곱근을 계산한다. 본 논문에서는 뉴톤-랍손 역수 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. `F`의 역수 제곱근 계산은 초기값 '$X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$'에 대하여, '$X_{i+1}=\frac{{X_i}(3-e_r-{FX_i}^2)}{2}$, $i\in{0,1,2,{\ldots}n-1}$'을 반복한다. 중간 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 '$e_r=2^{-p}$' 보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. '$X_i={\frac{1}{\sqrt{F}}}{\pm}e_i$'라고 하면 '$X_{i+1}={\frac{1}{\sqrt{F}}}-e_{i+1}$, $e_{i+1}{<}{\frac{3{\sqrt{F}}{{e_i}^2}}{2}}{\mp}{\frac{{Fe_i}^3}{2}}+2e_r$이 된다. '$|{\frac{\sqrt{3-e_r-{FX_i}^2}}{2}}-1|<2^{\frac{\sqrt{-p}{2}}}$'이면,'$e_{i+1}<8e_r$이 부동소수점으로 표현 가능한 최소값보다 작아지며, '$X_{i+1}\fallingdotseq{\frac{1}{\sqrt{F}}}$'이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블($X_0={\frac{1}{\sqrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.