Communications for Statistical Applications and Methods
/
제5권3호
/
pp.623-632
/
1998
이원혼합모형에서 고정효과의 추정가능한 함수에 대한 신뢰구간을 구하는 경우에 어떤 분산성분추정량을 선택하는 것이 가장 바람직한가를 모의실험을 통하여 살펴본다 혼합모형에서는 t-분포와 일반화최소제곱추정량을 사용하여 신뢰구간을 구할 수 있는데, 일반적으로 분산성분을 알 수 없기 때문에 분산성분을 반드시 추정하여야만 한다. 이 경우 분산성분의 추정량으로 가장 많이 사용되는 추정량들인 Henderson의 방법 III 추정량, 사전추측값이 1인 MINQUE 추정량, MLE(최우추정량), REMLE(제한최우추정량)를 이용하여 분산행렬을 추정하고, 신뢰구간의 포함범위확률과 평균길이를 모의실험을 통하여 살펴본다. 모의실험의 결과는 4가지 추정량 모두 비슷한 신뢰구간의 포함범위확률과 평균길이를 갖는 것으로 판명되었다.
Carroll과 Ruppert(1988)는 준가능도(quasi-likelihood)를 이용하여 에스트라제 측정자료를 회귀분석하였다. Jung과 Lee(1997)는 준가능도을 이용한 회귀분석모형의 적합도정통계량을 제안하였으며 검정 별과 기각되지 않아 본 분석모형이 타당하다고 주장하였다. 그러나 Lee와 Nelder(1998)의 잔차그림을 검토한 결과, 상기 모형으로는 평균증가에 따른 분산증가를 충분히 반영할 수 없었다. 본 논문에서는 Lee와 Nelder(1998)의 평균과 분산의 동시모형으로 에스트라제 자료를 재분석하고 잔차그림을 이용하여 모형의 타당성을 재평가하였다. 또한 분산에서 산포모형에 대한 적합도검정에는 Lee와 Nelder(1998)의 제한가능도(restricted likelihood)에 근거한 검정법이 보다 적절함을 제시하였다.
Journal of the Korean Data and Information Science Society
/
제16권3호
/
pp.591-601
/
2005
지금까지 회귀모형에서 불연속점의 추정은 주로 평균함수에 대해 연구되어져 왔다. 분산함수는 평균함수와 더불어 회귀모형의 연구에 매우 중요한 함수이며 이 함수가 불연속일 때의 연구는 활발히 이루어지지 않았다. Delgado와 Hidalgo (2000)와 Perron(2001)은 시계열모형에서는 비모수적 추정법에 의해 분산함수의 추정을 연구하였다. Huh와 Kang (2004)은 Perron의 추정법을 회귀모형에 적용하여 분산함수의 불연속점의 추정에 대하여 연구하였고, Perron의 추정량보다 수렴속도가 개선된 불연속점 추정량을 제안하였다 이러한 분산함수의 추정들은 잔차의 제곱을 이용한 것으로 평균함수의 추정이 필수적이다. 결국, 전체적인 계산량이 늘어나게 되고, 늘어난 만큼 불연속점 추정의 정도가 벌어지게 될 것이다. 만약, 평균함수가 연속이고 분산함수만 불연속이라면 굳이 잔차를 이용하여 분산함수의 불연속점을 추정할 필요 없다. 분산함수만 불연속점을 가지므로 이차적률함수의 불연속점이 곧 분산함수의 불연속점이므로 이차함수의 불연속점을 추정하는 것으로 충분하다. 평균함수와 분산함수 모두 불연속이라면 불연속점의 위치가 같으므로 평균함수의 불연속점의 위치를 추정하면 분산함수의 불연속점의 위치를 추정하게 되는 것이다. 따라서 이 논문에서는 이차적률함수의 불연속점을 추정하는 방법을 제안하였고 이 제안된 추정량들의 수렴속도가 잔차를 이용한 Huh와 Kang의 분산함수의 불연속점 추정량의 수렴속도와 같음을 보였고, 모의실험 결과에서는 우수함을 보여주었다.
난류응력은 순간속도성분을 시간평균성분과 편차성분의 합으로 보고 Navier-Stokes 방정식으로부터 Reynolds 방정식을 유도할 때 나타나게 된다. Reynolds 방정식으로부터 수심 적분된 천수방정식을 유도하는 과정에서 시간 평균된 유속성분을 수심 적분된 유속성분과 편차성분의 합으로 본다면, 분산응력 (dispersion stress)이라고 하는 추가적인 새로운 항이 잔류하게 된다. 점성응력, 난류응력, 그리고 분산응력을 통칭하여 유효응력 (effective stress)이라고 한다. 일반적으로 수심에 비해 수로 폭이 넓은 개수로에서는 유효응력이 흐름특성의 수치 근사해에 큰 영향을 미치지 못한다고 가정하여 2차원 수심적분 모형에서 유효응력을 생략하기도 한다. 또한 유효응력을 적용하더라도, 점성응력이 난류응력에 비해 무시할 만큼 작다고 가정하여 난류응력만을 적용하며, 분산응력은 무시된다. 하지만 만곡부에서는 원심력과 편수위로 인한 횡방향 압력의 불균형이 발생하기 때문에, 만곡부의 이차류가 발생되며, 유속의 연직방향 분포도 일정하지 않게 된다. 따라서 본 연구의 목적은 만곡부의 이차류 특성을 수심적분 2차원 모형에 반영하기 위해 분산응력을 고려한 모형의 개발 및 검증이다. 불규칙한 모의영역을 원활히 나타낼 수 있도록 곡선좌표계를 사용하는 여타 모형들과 달리 유한유소법을 이용하여 수치해를 구하며, 따라서 x, y 좌표축을 사용하는 데카르트 좌표계를 사용하여 지배방정식을 나타낸다. 분산응력의 유 무에 따른 수치결과를 Rozovskii의 $180^{\circ}$ 만곡수로 실내실험 자료와 비교하여 개발 모형을 검증한다.
가속화 실패시간모형은 로그 생존시간과 공변량간의 선형적 관계를 묘사해 준다. 가속화 실패시간모형에서 생존시간의 평균뿐만 아니라 변동성에도 영향을 미치는 공변량 효과를 추론하는 것은 흥미가 있다. 이를 위해 생존시간의 평균뿐만 아니라 분산을 모형화 하는 것이 필요하며, 이러한 모형을 평균-분산 가속화 실패시간모형이라 부른다. 본 논문에서는 벌점 가능도함수를 이용하여 평균-분산 가속화 실패시간모형에서 회귀모수에 대한 변수선택 절차를 제안한다. 여기서 벌점함수로서 LASSO, ALASSO, SCAD 그리고 HL (계층가능도)와 같은 네 가지 벌점함수를 연구한다. 제안된 변수선택 절차를 통해 중요한 공변량의 선택 뿐만 아니라 회귀모수의 추정을 동시에 제공할 수 있다. 제안된 방법의 성능은 모의실험을 통해 평가하고, 하나의 임상 예제자료를 통해 제안된 방법을 예증하고자 한다.
Journal of the Korean Data and Information Science Society
/
제8권2호
/
pp.195-209
/
1997
일반화 선형모형의 범위를 크게 확장한 준-우도 모형에서 반응변수의 분산성분인 산포모수가 상수가아니라 어떤 공변량들의 값에 의존하여 변하는 경우, 평균과 산포의 동시 모형화가 요구된다. 본 논문에서는 준-우도 모형에서 평균과 산포의 동시 모형화를 통해 실제 자료를 쉽게 분석하도록 해주는 통계 패키지 GENSTAT(release 5.3.2, 1996)을 활용하여, Carrol과 Ruppert(1987,pp.46-47)에 의해 소개된 에스테르 분해효소 (esterase assay)의 자료에 대해 그래픽 방법을 이용한 모형검토를 통해서 기존의 평균모형 보다는 평균과 산포의 동시 모형화를 고려해야 하는 필요성을 언급한 뒤, 그 자료에 대한 적절한 평균과 산포의 동시 모형을 찾는 방법을 연구한다.
손실기피(limited down side risk) 선호를 가진 투자자의 경우 통상적으로 사용하는 위험도의 척도인 분산 혹은 표준편차 대신에 하방 위험성에 더 관심을 가지게 되는데, 이러한 경우 평균-VaR 모형이 평균-분산 모형보다 더 적합한 모형일 수 있다. 이 논문에서는 두 모형을 이용하여 최적자산배분 문제를 실증분석하고 그 결과의 차이를 비교하였다. 수익률의 분포에 정규분포 가정이 아닌 두터운 꼬리(fat tail) 분포 가정을 도입하여 극단적인 위험을 고려한 최적자산배분 문제를 분석을 하였다. 각 이론이나 가정들의 강건성(robustness)을 살펴보기 위하여 역사적 분포를 이용한 분석을 비교 기준으로 하였다. 경험적 혹은 역사적 분포를 이용한 분석을 통해서, 극단적인 위험을 고려하는 손실기피적인 선호체계에서의 최적화 행위는 정규분포의 가정이나 평균-분산 모형이 적절하지 않은 것으로 확인되었다. 일상적인 수준을 능가하는 극단적인 손실 위험성을 고려하기에 적합한 모형은 수익률의 두터운 꼬리를 반영하는 분포 가정에 기초한 평균-VaR 모형인 것으로 나타났다.
통계적 추론에 사용되는 많은 통계량들은 평균벡터의 평활함수의 형태로 표현이 가능하다. 본 연구에서는 이들 통계량들의 분포함수에 대한 안부점근사법을 제시하였다. 이 방법은 Na(1998)에서 제시된 일반적 통계량의 분포함수에 대한 안부점근사법이 평균벡터의 평활함수모형에 특히 유용하게 사용될 수 있음을 보인 것이다. 이 근사법은 정규근사에 비해 근사의 정도가 뛰어나며, 특히 통계량의 꼬리부분의 확률에 대해서도 정확도가 그대로 유지되는 장점이 있어 정밀한 추론이 요구되는 많은 문제에 효과적으로 사용될 수 있다. 모의 실험에 사용할 평균벡터의 평활함수 모형으로는 스튜던트화 분산을 고려하였다.
주식 수익률이 정상적 과정이 아니라 비정상적 과정에 의해서 생성되고 있다는 사실이 여러 실증 분석에서 제시되고 있다. 시계열의 평균이 시간의 흐름에 따라 변하면 이 시계열은 비정상적 과정에 의하여 생성된다. 시간의 흐름에 따라 평균이 변하는 비정상 시계열은 단위근과 공적분에 의하여 시계열의 운동을 모형화하고 있다. 한편 시계열의 비정상성은 분산이 시간의 흐름에 따라 변할 때에도 발생한다. 시간의 흐름에 따라 무조건부 분산은 변하지 않고 있지만 이용 가능한 정보 집합을 조건으로 하는 조건부 분산이 변하는 경우도 있다. 이 같은 성질을 가진 주가 시계열은 자기회귀 조건부 이분산(ARCH) 계통의 과정으로 모형화하고 있다. 그러나 무조건부 분산이 시간의 흐름에 따라 변하면 ARCH 계통은 중대한 모형정립과오(misspecification)에 직면하게 된다. 따라서 본 논문은 무조건부 분산이 시간의 흐름에 따라 변할 때 자기 회귀 과정의 모수를 추정하는 방법을 검토하고, 이 방법을 한국 종합주가 지수에 적용하여 자기회귀 과정의 모수를 추정하였다. 이 방법에 의하여 추정된 2계 자기회귀 과정의 모수값 중 상수항과 제1계 항의 계수는 통상 최소자승법에 의한 값과 유사하다. 그러나 제2계 항 모수의 값은 양자가 상당히 다르다. 최소자승에 의한 제2계 값이 과대 추정되고 있다.
Communications for Statistical Applications and Methods
/
제4권3호
/
pp.611-616
/
1997
불균형일원변량모형에서 분산성분비율의 점추정에 관한 문제가 고려되어진다. 분산성분비율에 대한 새로운 추정량이 제안되며, 분산성분비율에 대한 여러가지 점추정량과 제안된 추정량을 평균자승오차(MSE)의 관점에서 추정량들의 효율성을 모의실험을 통하여 살펴본다. 결론적으로 제안된 추정량은 수준의 수가 크고 불균형정도가 매우 심한 경우를 제외하고 다른 추정량들보다 훨씬 MSE 효율성이 높아짐을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.