• Title/Summary/Keyword: 평가 툴

Search Result 266, Processing Time 0.024 seconds

Immunomodulatory Effect of Mesenchymal Stem Cell-Derived Exosomes in Lipopolysaccharide-Stimulated RAW 264.7 Cells (Lipopolysaccharide로 자극한 RAW 264.7 세포에서 성체줄기세포 유래 엑소좀(exosome)의 면역 조절 효과)

  • Jung, Soo-Kyung;Park, Mi Jeong;Lee, Jienny;Byeon, Jeong Su;Gu, Na-Yeon;Cho, In-Soo;Cha, Sang-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.383-390
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) are multipotent stem cells that can be differentiated into a variety of cell types, including adipocytes, osteoblasts, chondrocytes, β-pancreatic islet cells, and neuronal cells. MSCs have been reported to exhibit immunomodulatory effects in many diseases. Many studies have reported that MSCs have distinct roles in modulating inflammatory and immune responses by releasing bioactive molecules. Exosomes are cell-derived vesicles present in biological fluids, including the blood, urine, and cultured medium of cell cultures. In this study, we investigated the immunomodulatory effects of mouse adipose tissue-derived MSCs (mAD-MSCs), cultured medium (MSC-CM) of mAD-MSCs, and mAD-MSC-derived exosomes (MSC-Exo) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. We observed that the expression levels of IL-1β, TNF-α, and IL-10 were significantly increased in LPS-stimulated RAW 264.7 cells compared to those in LPS-unstimulated RAW 264.7 cells. Additionally, these values were significantly (p < 0.05) decreased in mAD-MSCs-RAW 264.7 cell co-culture groups, MSC-CM-treated groups, and MSC-Exo-treated groups. MSCs can modulate the immune system in part by secreting cytokines and growth factors. We observed that immunomodulatory factors such as IL-1β, TNF-α, and IL-10 were secreted by mAD-MSCs under co-culturing conditions of mAD-MSCs with activated RAW 264.7 cells. In addition, mAD-MSC-derived exosomes exhibited similar immunomodulatory effects in activated RAW 264.7 cells. Therefore, our results suggest that mAD-MSCs have an immunomodulatory function through indirect contact.

Network-Adaptive Transport Error Control for Reliable Wireless Media Transmission (신뢰성 있는 무선 미디어 전송을 위한 네트워크 적응형 전송오류 제어)

  • Lee Chul-Ho;Choi Jeong-Yong;Kwon Young-Woo;Kim Jongwon;Shin Jitae;Jeon Dong-San;Kim Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.548-556
    • /
    • 2005
  • In wireless network environments, wireless channels are characterized by time-varying fading and interference conditions, which may lead to burst packet corruptions and delay variation. This can cause severe quality degradation of streaming media. To guarantee successful transmission of media over the hostile wireless networks, where channel conditions are highly fluctuating, a flexible and network-adaptive transport method is required. Thus, we propose a network-adaptive transport error control consisting of packet-level interleaved FEC and delay-constrained ARQ, which acts as an application-level transport method of streaming media to alleviate burst packet losses while adapting to the changing channel condition in wireless networks. The performances of the proposed network-adaptive transport error control, general error control schemes, and hybrid schemes are evaluated by a developed simulator at the transport-level and video quality of streaming media. Simulation results show that the proposed mechanism provides the best overall performance among compared other schemes in terms of the transport-level performance of error control and the performance of video quality for streaming media.

Design of NePID using Anomaly Traffic Analysis and Fuzzy Cognitive Maps (비정상 트래픽 분석과 퍼지인식도를 이용한 NePID 설계)

  • Kim, Hyeock-Jin;Ryu, Sang-Ryul;Lee, Se-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.811-817
    • /
    • 2009
  • The rapid growth of network based IT systems has resulted in continuous research of security issues. Probe intrusion detection is an area of increasing concerns in the internet community. Recently, a number of probe intrusion detection schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems, are useful only for the existing patterns of probe intrusion. They can not detect new patterns of probe intrusion. Therefore, it is necessary to develop a new Probe Intrusion Detection technology that can find new patterns of probe intrusion. In this paper, we proposed a new network based probe intrusion detector(NePID) using anomaly traffic analysis and fuzzy cognitive maps that can detect intrusion by the denial of services attack detection method utilizing the packet analyses. The probe intrusion detection using fuzzy cognitive maps capture and analyze the packet information to detect syn flooding attack. Using the result of the analysis of decision module, which adopts the fuzzy cognitive maps, the decision module measures the degree of risk of denial of service attack and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.094% and the max-average false negative rate of 2.936%. The true positive error rate of the NePID is similar to that of Bernhard's true positive error rate.

Fabric Mapping and Placement of Field Programmable Stateful Logic Array (Field Programmable Stateful Logic Array 패브릭 매핑 및 배치)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, the Field Programmable Stateful Logic Array (FPSLA) was proposed as one of the most promising system integration technologies which will extend the life of the Moore's law. This work is the first proposal of the FPSLA design automation flow, and the approaches to logic synthesis, synchronization, physical mapping, and automatic placement of the FPSLA designs. The synchronization at each gate for pipelining determines the x-coordinates of cells, and reduces the placement to 1-dimensional problems. The objective function and its gradients for the non-linear optimization of the net length and placement density have been remodeled for the reduced global placement problem. Also, a recursive algorithm has been proposed to legalize the placement by relaxing the density overflow of bipartite bin groups in a top-down hierarchical fashion. The proposed model and algorithm are implemented, and validated by applying them to the ACM/SIGDA benchmark designs. The output state of a gate in an FPSLA needs to be duplicated so that each fanout gate can be connected to a dedicated copy. This property has been taken into account by merging the duplicated nets into a hyperedge, and then, splitting the hyperedge into edges as the optimization progresses. This yields additional 18.4% of the cell count reduction in the most dense logic stage. The practicality of the FPSLA can be further enhanced primarily by incorporating into the logic synthesis the constraint to avoid the concentrated fains of gates on some logic stages. In addition, an efficient algorithm needs to be devised for the routing problem which is based on a complicated graph. The graph models the nanowire crossbar which is trimmed to be embedded into the FPSLA fabric, and therefore, asymmetric. These CAD tools can be used to evaluate the fabric efficiency during the architecture enhancement as well as automate the design.

A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification (자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구)

  • Pham, Chuyen;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.462-472
    • /
    • 2020
  • Rock classification is fundamental discipline of exploring geological and geotechnical features in a site, which, however, may not be easy works because of high diversity of rock shape and color according to its origin, geological history and so on. With the great success of convolutional neural networks (CNN) in many different image-based classification tasks, there has been increasing interest in taking advantage of CNN to classify geological material. In this study, a feasibility of the deep CNN is investigated for automatically and accurately identifying rock types, focusing on the condition of various shapes and colors even in the same rock type. It can be further developed to a mobile application for assisting geologist in classifying rocks in fieldwork. The structure of CNN model used in this study is based on a deep residual neural network (ResNet), which is an ultra-deep CNN using in object detection and classification. The proposed CNN was trained on 10 typical rock types with an overall accuracy of 84% on the test set. The result demonstrates that the proposed approach is not only able to classify rock type using images, but also represents an improvement as taking highly diverse rock image dataset as input.

Hardware Design for JBIG2 Encoder on Embedded System (임베디드용 JBIG2 부호화기의 하드웨어 설계)

  • Seo, Seok-Yong;Ko, Hyung-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.182-192
    • /
    • 2010
  • This paper proposes the hardware IP design of JBIG2 encoder. In order to facilitate the next generation FAX after the standardization of JBIG2, major modules of JBIG2 encoder are designed and implemented, such as symbol extraction module, Huffman coder, MMR coder, and MQ coder. ImpulseC Codeveloper and Xilinx ISE/EDK program are used for the synthesis of VHDL code. To minimize the memory usage, 128 lines of input image are processed succesively instead of total image. The synthesized IPs are downloaded to Virtex-4 FX60 FPGA on ML410 development board. The four synthesized IPs utilize 36.7% of total slice of FPGA. Using Active-HDL tool, the generated IPs were verified showing normal operation. Compared with the software operation using microblaze cpu on ML410 board, the synthesized IPs are better in operation time. The improvement ratio of operation time between the synthesized IP and software is 17 times in case of symbol extraction IP, and 10 times in Huffman coder IP. MMR coder IP shows 6 times faster and MQ coder IP shows 2.2 times faster than software only operation. The synthesized H/W IP and S/W module cooperated to succeed in compressing the CCITT standard document.

Development of Unmatched System Model for Iterative Image Reconstruction for Pinhole Collimator of Imaging Systems in Nuclear Medicine (핀홀콜리메이터를 사용한 핵의학영상기기의 순환적 영상 재구성을 위한 비동일 시스템 모델 개발)

  • Bae, Jae-Keon;Bae, Seung-Bin;Lee, Ki-Sung;Kim, Yong-Kwon;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.353-360
    • /
    • 2012
  • Diverse designs of collimator have been applied to Single Photon Emission Computed Tomography (SPECT) according to the purpose of acquisition; thus, it is necessary to reflect geometric characteristic of each collimator for successive image reconstruction. This study carry out reconstruction algorithm for imaging system in nuclear medicine with pinhole collimator. Especially, we study to solve sampling problem which caused in the system model of pinhole collimator. System model for a maximum likelihood expectation maximization (MLEM) was developed based on the geometry of the collimator. The projector and back-projector were separately implemented based on the ray-driven and voxel-driven methods, respectively, to overcome sparse sampling problem. We perform phantom study for pinhole collimator by using geant4 application for tomographic emission(GATE) simulation tool. The reconstructed images show promising results. Designed iterative reconstruction algorithm with unmatched system model effective to remove sampling problem artefact. Proposed algorithm can be used not only for pinhole collimator but also for various collimator system of imaging system in nuclear medicine.

Ontology-based Approach to Analyzing Commonality and Variability of Features in the Software Product Line Engineering (소프트웨어 제품 계열 공학의 온톨로지 기반 휘처 공동성 및 가변성 분석 기법)

  • Lee, Soon-Bok;Kim, Jin-Woo;Song, Chee-Yang;Kim, Young-Gab;Kwon, Ju-Hum;Lee, Tae-Woong;Kim, Hyun-Seok;Baik, Doo-Kwon
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.196-211
    • /
    • 2007
  • In the Product Line Engineering (PLE), current studies about an analysis of the feature have uncertain and ad-hoc criteria of analysis based on developer’s intuition or domain expert’s heuristic approach and difficulty to extract explicit features from a product in a product line because the stakeholders lack comprehensive understanding of the features in feature modeling. Therefore, this paper proposes a model of the analyzing commonality and variability of the feature based on the Ontology. The proposed model in this paper suggests two approaches in order to solve the problems mentioned above: First, the model explicitly expresses the feature by making an individual feature attribute list based on the meta feature modeling to understand common feature. Second, the model projects an analysis model of commonality and variability using the semantic similarity between features based on the Ontology to the stakeholders. The main contribution of this paper is to improve the reusability of distinguished features on developing products of same line henceforth.

Assessing the Real-time Positioning Accuracy of Low-cost GPS Receiver using NTRIP-based Augmentation Service (Ntrip 기반 보정서비스를 활용한 저가 GPS 수신기의 실시간 측위 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2015
  • This paper presents the static and kinematic positioning accuracy by the real-time GPS positioning modes of the low-cost GPS receivers using NTRIP-based augmentation service. For this, acquires both the raw measurements data of the field tests by LEA 6T GPS module of u-blox AG, and correction communication via NTRIP caster with RTKLIB as an open source program for GNSS solution. With computing the positions of the check points and road tracks by six kinds of GPS positioning modes which are Single, SBAS, DGPS, PPP, RTK, and TCP/IP_RTK, compared these results to the reference position of the check points. The position error average and rmse of the static test by GPS L1 RTK surveying showed $N=0.002m{\pm}0.001m$, $E=0.004m{\pm}0.001m$ in horizontal plane, and $h=-0.116m{\pm}0.003m$ in vertical, these results are very closed to the coordinates with the geodetic receiver. Especially, in case of the kinematic test with obstacles located on both sides of road, the computed track with ambiguity fixing showed very similar trajectory considerably from VRS network RTK mode. And also, evaluate and verify the performance of the TCP/IP_RTK mode developed based on TCP/IP protocol.

Image Generator Design for OLED Panel Test (OLED 패널 테스트를 위한 영상 발생기 설계)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In this paper, we propose an image generator for OLED panel test that can compensate for color coordinates and luminance by using panel defect inspection and optical measurement while displaying images on OLED panel. The proposed image generator consists of two processes: the image generation process and the process of compensating color coordinates and luminance using optical measurement. In the image generating process, the panel is set to receive the panel information to drive the panel, and the image is output by adjusting the output setting of the image generator according to the panel information. The output form of the image is configured by digital RGB method. The pattern generation algorithm inside the image generator outputs color and gray image data by transmitting color data to a 24-bit data line based on a synchronization signal according to the resolution of the panel. The process of compensating color coordinates and luminance using optical measurement outputs an image to an OLED panel in an image generator, and compensates for a portion where color coordinates and luminance data measured by an optical module differ from reference data. To evaluate the accuracy of the image generator for the OLED panel test proposed in this paper, Xilinx's Spartan 6 series XC6SLX25-FG484 FPGA was used and the design tool was ISE 14.5. The output of the image generation process was confirmed that the target setting value and the simulation result value for the digital RGB output using the oscilloscope matched. Compensating the color coordinates and luminance using optical measurements showed accuracy within the error rate suggested by the panel manufacturer.