• Title/Summary/Keyword: 평가지 생성 알고리즘

Search Result 356, Processing Time 0.025 seconds

Design and Implementation of Genetic Test-Sheet-Generating Algorithm Considering Uniformity of Difficulty (난이도 균일성을 고려한 유전자 알고리즘 기반 평가지 생성 시스템의 설계 및 구현)

  • Song, Bong-Gi;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.912-922
    • /
    • 2007
  • Evaluation of distance teaming systems needs a method that maintains a consistent level of difficulty for each test. In this paper, we propose a new algorithm for test sheet generation based on genetic algorithm. Unlike the existing methods that difficulty of each test item is assigned by tutors, in the proposed method, that can be adjusted by the result of the previous tests and the average difficulty of test sheet can be consistently reserved. We propose the new genetic operators to prevent duplications of test items in a test sheet and apply the adjusted difficulty of each test item. The result of simulation shows that difficulty of the test sheet generated by proposed method can be more regular than the random method and the simulated annealing method.

  • PDF

The Proposed Self-Generation Supervised Learning Algorithm for Image Recognition (영상 인식을 위한 제안된 자가 생성 지도 학습 알고리즘)

  • 이혜현;류재욱;조아현;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.226-230
    • /
    • 2001
  • 오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.

  • PDF

A Partitioned Evolutionary Algorithm Based on Heuristic Evolution for an Efficient Supervised Fuzzy Clustering (효율적인 지도 퍼지 군집화를 위한 휴리스틱 분할 진화알고리즘)

  • Kim, Sung-Eun;Ryu, Joung-Woo;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.667-669
    • /
    • 2005
  • 최근 새로운 데이터마이닝 방법인 지도 군집화가 소개되고 있다. 지도 군집화의 목적은 동일한 클래스가 한 군집에 포함되도록 하는 것이다. 지도 군집화는 데이터에 대한 배경 지식을 획득하거나 분류 방법의 성능을 향상시키기 위한 방법으로 사용된다. 그러나 군집화 방법에서 파생된 지도 군집화 역시 군집화 개수 설정 방법에 따라 효율성이 좌우된다. 따라서 클래스 분포에 따라 최적의 지도 군집화 개수를 찾기 위해 진화알고리즘을 적용할 수 있으나, 진화알고리즘은 대용량 데이터를 처리할 경우 수행 시간이 증가되어 효율성이 감소되는 문제가 있다. 본 논문은 지도 군집화보다 강인한인 지도 퍼지 군집화를 효율적으로 생성하기 위해 진화성이 우수한 휴리스틱 분할 진화알고리즘을 제안한다. 휴리스틱 분할 진화알고리즘은 개체를 생성할 때 문제영역의 지식을 반영한 휴리스틱 연산으로 탐색 시간을 단축시키고, 개체 평가 단계에서 전체 데이터 대신 샘플링된 부분 데이터들을 이용하여 진화하는 분할 진화 방법으로 수행 시간을 단축시킴으로써 진화알고리즘의 효율성을 높인다. 또한 효율적으로 개체를 평가하기 위해 지도 퍼지 군집화 알고리즘인 지도 분할 군집화 알고리즘(SPC: supervised partitional clustering)을 제안한다. 제안한 방법은 이차원 실험 데이터에 대해서 정확성과 효율성을 분석하여 그 타당성을 확인한다.

  • PDF

Generation of Efficient Fuzzy Classification Rules for Intrusion Detection (침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성)

  • Kim, Sung-Eun;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.519-529
    • /
    • 2007
  • In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

Generating Adaptive Fuzzy Classification Rules using An Efficient Evolutionary Algorithm (효율적인 진화알고리즘을 이용한 적응형 퍼지 분류 규칙 생성)

  • Ryu, Joung-Woo;Kim, Sung-Eun;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.769-771
    • /
    • 2005
  • 데이터 특성이 연속적이고 애매할 때 퍼지규칙으로 분류 규칙을 표현하는 것은 매우 유용하고 효과적이다. 그러나 일반적으로 정확하지 않은 데이터 특성에 대해서 소속함수를 결정한다는 것은 어려운 일이다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류 규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법에서 규칙의 정확성과 이해성을 고려하여 최적화된 소속함수를 생성하기 위해 진화알고리즘을 사용한다. 먼저 지도 군집화로 진화를 위한 초기 소속함수를 생성한다. 진화알고리즘은 전역적 최적 해를 찾는데 효과적이다. 그러나 시간에 대한 효율성이 낮다. 특히 모델 최적화 문제에서는 개체 평가 단계에서 많은 시간이 소요된다. 따라서 본 논문에서는 전체 데이터를 여러 개의 부분 데이터들로 나누고 개체들은 전체 데이터 대신 매번 부분 데이터를 임의적으로 선택하여 개체를 평가함으로써 수행 시간을 단축시킬 수 있는 진화 방법을 제안한다. 제안한 퍼지 분류 규칙 생성 방법의 타당성을 검증하기 위한 실험 데이터로 UCI에서 제공하는 데이터들을 사용하였으며, 실험 결과는 기존 방법에 비해 평균적으로 더 효과적임을 확인하였다.

  • PDF

An Improved Technique of Fitness Evaluation for Automated Test Data Generation (테스트 데이터 자동 생성을 위한 적합도 평가 방법의 효율성 향상 기법)

  • Lee, Sun-Yul;Choi, Hyun-Jae;Jeong, Yeon-Ji;Bae, Jung-Ho;Kim, Tae-Ho;Chae, Heung-Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.12
    • /
    • pp.882-891
    • /
    • 2010
  • Many automated dynamic test data generation technique have been proposed. The techniques evaluate fitness of test data through executing instrumented Software Under Test (SUT) and then generate new test data based on evaluated fitness values and optimization algorithms. Previous researches and experiments have been showed that these techniques generate effective test data. However, optimization algorithms in these techniques incur much time to generate test data, which results in huge test case generation cost. In this paper, we propose a technique for reducing the time of evaluating a fitness of test data among steps of dynamic test data generation methods. We introduce the concept of Fitness Evaluation Program (FEP), derived from a path constraint of SUT. We suggest a test data generation method based on FEP and implement a test generation tool, named ConGA. We also apply ConGA to generate test cases for C programs, and evaluate efficiency of the FEP-based test case generation technique. The experiments show that the proposed technique reduces 20% of test data generation time on average.

An Automatic Rhythm and Melody Composition System Considering User Parameters and Chord Progression Based on a Genetic Algorithm (유전알고리즘 기반의 사용자 파라미터 설정과 코드 진행을 고려한 리듬과 멜로디 자동 작곡 시스템)

  • Jeong, Jaehun;Ahn, Chang Wook
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.204-211
    • /
    • 2016
  • In this paper, we propose an automatic melody composition system that can generate a sophisticated melody by adding non-harmony tone in the given chord progression. An overall procedure consists of two steps, which are the rhythm generation and melody generation parts. In the rhythm generation part, we designed new fitness functions for rhythm that can be controlled by a user setting parameters. In the melody generation part, we designed new fitness functions for melody based on harmony theory. We also designed evolutionary operators that are conducted by considering a musical context to improve computational efficiency. In the experiments, we compared four metaheuristics to optimize the rhythm fitness functions: Simple Genetic Algorithm (SGA), Elitism Genetic Algorithm (EGA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). Furthermore, we compared proposed genetic algorithm for melody with the four algorithms for verifying performance. In addition, composition results are introduced and analyzed with respect to musical correctness.

A Basic Study on Automation of the Subjective Evaluation using Speech Recognition (음성인식을 이용한 주관평가의 자동화에 관한 기초연구)

  • 한화영;고한우;윤용현;조택동
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.113-117
    • /
    • 2000
  • 수작업으로 이루어지고 있는 환경의 영향이나 작업의 영향에 따른 정신피로나 신체피로의 주관적인 평가를 자동화하기 위한 방법에 대하여 논하였다. 사람의 가장 자연스러운 의사소통인 평가어를 척도로 하여 평가가 이루어지는 음성인식기술을 응용한 주관평가법에 대하여 연구하였다. 주관평가의 자동화를 위하여 우선, 평가어에 대한 음성 인식을 한 후 인식된 평가 결과 데이터를 이용하여 설문지를 자동 생성시킴과 동시에 파일 형태로 저장시켰다. 음성 인식 알고리즘으로는 DTW(Dynamic Time Warping)인식 알고리즘을 사용하였고. 설문지 질의 내용은 집중도 평가를 이용하였다. 인식실험은 설문에 대한 응답에 필요한 평가어를 대상으로 하였다.

  • PDF

Fingerprint Image Generation using Filter Combination based on the Genetic Algorithm (GA기반 영상필터 조합을 이용한 지문영상생성)

  • Cho, Ung-Keun;Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • The construction of a fingerprint database is important to evaluate the performance of an automatic fingerprint recognition system. Due to the cost of collecting fingerprints, there are only few benchmark databases available. Since it is hard to evaluate how robust the system is in various environments with the databases, this paper proposes a novel method that generates fingerprint images automatically from only a few training samples by using the genetic algorithm. Fingerprints generated by the proposed method include similar characteristics of those collected from the corresponding real environment. The proposed method has been verified by comparing with real fingerprint images, showing the usefulness of the method.

A Study on The Game Character Creation Using Genetic Algorithm in Football Simulation Games (축구 시뮬레이션 게임에서의 유전 알고리즘을 활용한 게임 캐릭터 생성 연구)

  • No, Hae-Sun;Rhee, Dae-Woong
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.129-138
    • /
    • 2017
  • In football simulation games, it is very important for the interest of the game to make the stats of the football players close to reality. As the management concept is introduced to the sports simulation game, when the user plays the game for a long time, the existing player character retires. Therefore, the game creates the environment of the game by creating a new player in the game. In this study, we propose a method to create a new player character by using genetic algorithm to have the optimal ability similar to existing players. We compare and evaluate the player character with the existing random generation method, the correction random method and the proposed algorithm, and verify the validity of the proposed method.