원격교육 시스템의 평가 시스템에서 평가의 공정성을 위하여 매 평가 시 평가지의 난이도를 일정하게 유지할 수 있는 방법이 요구된다. 본 논문에서는 유전자 알고리즘 기반의 평가지 생성 알고리즘을 제안한다. 평가지의 각 문항에 대한 난이도가 제출자에 의해서 지정되는 기존의 방법과는 달리 제안한 알고리즘에서는 각 문항의 난이도가 학생들의 평가 결과에 따라 적응적으로 조절되고, 평가지의 평균 난이도를 일정한 수준으로 유지할 수 있다. 제안한 알고리즘에서는 평가지에 동일한 문항이 중복으로 포함되는 것을 배제하고, 이전 평가의 결과를 반영하여 적응적으로 난이도가 조절될 수 있는 새로운 형태의 유전 연산자를 설계하고 구현한다. 그리고 모의실험을 통해 기존의 임의선택 방법과 모의 담금질 방법에 비해 균일한 난이도를 갖는 평가지가 생성될 수 있음을 보인다.
오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.
최근 새로운 데이터마이닝 방법인 지도 군집화가 소개되고 있다. 지도 군집화의 목적은 동일한 클래스가 한 군집에 포함되도록 하는 것이다. 지도 군집화는 데이터에 대한 배경 지식을 획득하거나 분류 방법의 성능을 향상시키기 위한 방법으로 사용된다. 그러나 군집화 방법에서 파생된 지도 군집화 역시 군집화 개수 설정 방법에 따라 효율성이 좌우된다. 따라서 클래스 분포에 따라 최적의 지도 군집화 개수를 찾기 위해 진화알고리즘을 적용할 수 있으나, 진화알고리즘은 대용량 데이터를 처리할 경우 수행 시간이 증가되어 효율성이 감소되는 문제가 있다. 본 논문은 지도 군집화보다 강인한인 지도 퍼지 군집화를 효율적으로 생성하기 위해 진화성이 우수한 휴리스틱 분할 진화알고리즘을 제안한다. 휴리스틱 분할 진화알고리즘은 개체를 생성할 때 문제영역의 지식을 반영한 휴리스틱 연산으로 탐색 시간을 단축시키고, 개체 평가 단계에서 전체 데이터 대신 샘플링된 부분 데이터들을 이용하여 진화하는 분할 진화 방법으로 수행 시간을 단축시킴으로써 진화알고리즘의 효율성을 높인다. 또한 효율적으로 개체를 평가하기 위해 지도 퍼지 군집화 알고리즘인 지도 분할 군집화 알고리즘(SPC: supervised partitional clustering)을 제안한다. 제안한 방법은 이차원 실험 데이터에 대해서 정확성과 효율성을 분석하여 그 타당성을 확인한다.
본 논문에서는 효율적인 침입 탐지를 위해 퍼지 규칙을 이용하는 방법을 제안한다. 제안한 방법은 퍼지 의사결정 트리의 생성을 통해 침입 탐지를 위한 퍼지 규칙을 생성하고 진화 알고리즘을 사용하여 최적화한다. 진화 알고리즘의 효율적인 수행을 위해 지도 군집화를 사용하여 퍼지 규칙을 위한 초기 소속함수를 생성한다. 제안한 방법의 진화 알고리즘은 적합도 평가시 퍼지 규칙(퍼지 의사결정 트리)의 성능과 복잡성을 고려하여 평가한다. 또한 데이타 분할을 이용한 평가와 퍼지 의사결정 트리의 생성과 평가 시간을 줄이는 방법으로 소속정도 캐싱과 zero-pruning을 사용한다. 제안한 방법의 성능 평가를 위해 KDD'99 Cup의 침입 탐지 데이타로 실험하여 기존 방법보다 성능이 향상된 것을 확인하였다. 특히, KDD'99 Cup 우승자에 비해 정확도가 1.54% 향상되고 탐지 비용은 20.8% 절감되었다.
데이터 특성이 연속적이고 애매할 때 퍼지규칙으로 분류 규칙을 표현하는 것은 매우 유용하고 효과적이다. 그러나 일반적으로 정확하지 않은 데이터 특성에 대해서 소속함수를 결정한다는 것은 어려운 일이다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류 규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법에서 규칙의 정확성과 이해성을 고려하여 최적화된 소속함수를 생성하기 위해 진화알고리즘을 사용한다. 먼저 지도 군집화로 진화를 위한 초기 소속함수를 생성한다. 진화알고리즘은 전역적 최적 해를 찾는데 효과적이다. 그러나 시간에 대한 효율성이 낮다. 특히 모델 최적화 문제에서는 개체 평가 단계에서 많은 시간이 소요된다. 따라서 본 논문에서는 전체 데이터를 여러 개의 부분 데이터들로 나누고 개체들은 전체 데이터 대신 매번 부분 데이터를 임의적으로 선택하여 개체를 평가함으로써 수행 시간을 단축시킬 수 있는 진화 방법을 제안한다. 제안한 퍼지 분류 규칙 생성 방법의 타당성을 검증하기 위한 실험 데이터로 UCI에서 제공하는 데이터들을 사용하였으며, 실험 결과는 기존 방법에 비해 평균적으로 더 효과적임을 확인하였다.
테스트 데이터를 자동으로 생성하기 위한 동적 테스트 데이터 생성에 관한 많은 연구가 이루어졌다. 동적 테스트 데이터 생성 방법은 가공 테스트 대상 프로그램(SUT; Software Under Test)을 실행시켜 기존의 테스트 데이터의 적합도를 평가하고, 평가된 적합도 값과 최적의 알고리즘을 이용하여 새로운 테스트 데이터를 생성하는 방법이다. 최근에 전역 최적화 알고리즘을 이용한 동적 테스트 데이터 생성에 관한 많은 연구가 이루어져 왔고, 이 알고리즘을 통해서 테스트 대상 프로그램 (SUT)의 커버리지를 높일 수 있는 데이터를 생성할 수 있다는 것이 실험적으로 밝혀졌다. 그러나 최적화 알고리즘은 오랜 연산 시간이 필요하기 때문에, 이를 이용한 방법은 테스트 데이터를 생성하기 위해 많은 시간이 걸린다는 단점이 있다. 본 논문에서는 최적화 알고리즘을 이용한 동적 테스트 데이터 생성의 시간을 줄이기 위하여, 최적화 알고리즘의 절차 중 적합도 평가 시간을 줄이는 방법을 제안한다. 이를 위하여 SUT의 테스트 목표 경로로 부터 생성된 적합도 평가 프로그램(FEP)을 정의하고, 가공 SUT 실행하는 대신 소개된 FEP를 이용한 적합도 평가 방법을 제안하고 'ConGA'라는 도구를 구현한다. 그리고 C언어로 작성된 프로그램을 'ConGA'를 이용하여, 테스트 데이터 생성 효율성을 확인하였다. 이 실험을 통하여 제안된 방법이 기존의 방법보다 테스트 데이터 생성에 걸린 시간을 평균적으로 약 20% 줄인 것을 확인할 수 있었다.
본 논문에서는 주어진 코드 진행에서 비화성음을 활용한 화려한 멜로디를 자동으로 생성하는 새로운 진화적 자동 음악 작곡 시스템을 제안한다. 전체 시스템은 리듬 생성과 멜로디 생성의 두 단계로 나누어지며, 사용자 설정 파라미터로 제어되는 리듬 적합도 평가 함수와 화성학 기반으로 설계된 멜로디 적합도 평가 함수, 그리고 멜로디 최적화 성능 향상을 위해 설계된 음악적 문맥을 고려한 진화연산을 소개한다. 제안하는 리듬 적합도 평가 함수의 최적화에서 표준 유전알고리즘과 엘리티즘이 적용된 유전알고리즘, 차분진화 알고리즘, 그리고 입자군집최적화 알고리즘의 비교 실험을 하였으며, 멜로디 적합도 평가함수 최적화에서 위 4가지 알고리즘과 제안하는 진화연산을 적용한 유전알고리즘과의 비교 실험을 통해 성능을 검증하고, 생성된 멜로디에 대한 음악적 분석을 수행하였다.
수작업으로 이루어지고 있는 환경의 영향이나 작업의 영향에 따른 정신피로나 신체피로의 주관적인 평가를 자동화하기 위한 방법에 대하여 논하였다. 사람의 가장 자연스러운 의사소통인 평가어를 척도로 하여 평가가 이루어지는 음성인식기술을 응용한 주관평가법에 대하여 연구하였다. 주관평가의 자동화를 위하여 우선, 평가어에 대한 음성 인식을 한 후 인식된 평가 결과 데이터를 이용하여 설문지를 자동 생성시킴과 동시에 파일 형태로 저장시켰다. 음성 인식 알고리즘으로는 DTW(Dynamic Time Warping)인식 알고리즘을 사용하였고. 설문지 질의 내용은 집중도 평가를 이용하였다. 인식실험은 설문에 대한 응답에 필요한 평가어를 대상으로 하였다.
지문인식 시스템의 성능을 평가하기 위해서는 대규모 지문 DB를 구축하는 것이 필요하다. 지문을 수집하는 것은 매우 고비용의 작업이기 때문에, 지문 평가용 DB의 구축은 많이 이루어지지 않았고 실제로 소수의 평가용 DB만이 공개되어 있다. 뿐만 아니라 이들 DB는 제한된 환경에서 수집되어 있어 실제 다양한 환경에 대한 지문인식 시스템의 성능을 정확히 평가하기가 어렵다. 본 논문에서는 유전자 알고리즘을 이용하여 소수의 학습 샘플로부터 실제 환경에서 발생하는 다양한 영향을 고려한 지문영상을 자동으로 생성하는 방법을 제안한다. 제안하는 방법을 이용하여 생성된 지문은 실제 환경에서 수집된 지문과 유사한 특성을 가지기 때문에, 실제로 다수의 지문 영상을 수집하지 않고도 대상 환경에서의 성능평가가 가능하다. 실제 지문과의 비교를 통하여 제안하는 방법의 유용성을 검증하였다.
축구 시뮬레이션 게임에서 축구 선수들의 능력치를 현실에 가깝게 만드는 것은 게임의 흥미를 위해 매우 중요한 요소이다. 스포츠 시뮬레이션 게임에 경영 개념이 도입되면서 장시간 게임을 플레이하게 되면 기존 선수 캐릭터의 은퇴문제가 발생하고 새로운 선수 캐릭터를 생성하여 게임의 환경을 유지하게 된다. 본 연구에서는 새로운 선수 캐릭터를 생성할 때 유전 알고리즘을 활용하여 기존의 선수와 유사하면서 최적의 능력을 갖추게 하는 방식을 제안한다. 기존의 랜덤 생성방식, 보정 랜덤방식과 제안한 알고리즘으로 선수 캐릭터를 생성하여 비교, 평가하여 제안한 방식의 유효성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.