• 제목/요약/키워드: 평가정보예측

검색결과 2,060건 처리시간 0.024초

슈퍼스칼라 프로세서에서 값 예측기의 성능평가 (A Performance Evaluation of Value Predictors in a Superscalar Processor)

  • 전병찬;박희룡;이상정
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (3)
    • /
    • pp.10-12
    • /
    • 2001
  • 와이드 이슈 슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim ILP)을 향상시키는 기법이다. 본 논문에서는 명령어 수준 병렬성을 이용하여 성능을 향상시키기 위하여 데이터 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기의 성능을 비교분석 한다. 먼저 값 예측기 종류별로 성능을 측정한다 그리고 테이블의 갱신시점, 트레이스 캐시 유무 및 명령윈도우 크기에 따른 값 예측기의 성능영향을 평가분석 한다. 성능분석 결과 최근 값 예측기가 간소한 하드웨어 구성에도 불구하고 우수한 성능을 보였다. 그리고 예측테이블 갱신시점과 트레이스캐시의 사용이 값 예측기의 성능향상에 영향을 주었다.

  • PDF

추천 시스템의 예측 정확도 향상을 위한 고객 평가정보의 신뢰도 활용법 (Applying Rating Score's Reliability of Customers to Enhance Prediction Accuracy in Recommender System)

  • 최준연;이석기;조영빈
    • 한국콘텐츠학회논문지
    • /
    • 제13권7호
    • /
    • pp.379-385
    • /
    • 2013
  • 인터넷에서 고객들에 의해 생성된 평가정보는 해당 상품에 대한 고객별 선호도 정보로도 간주할 수 있기 때문에 개인화 추천을 위한 고객 프로필 생성에 효과적으로 활용될 수 있다. 하지만, 온라인에서의 상품평가는 누구나 작성할 수 있고, 왜곡된 목적으로 가지고 평가 행위를 하는 경우도 많아 평가정보의 신뢰도 편차가 크다. 따라서 본 연구에서는 상품에 부여된 평가정보 자체의 신뢰도를 측정하고 이를 추천시스템의 고객 프로필 생성 과정에 선별적으로 반영하는 방법론을 제안하고자 한다. 몇몇 추천 시스템 관련 연구에서 평가정보 작성자 수준에서 신뢰도를 측정하고 이를 활용하려 했던 것과 달리 본 연구에서는 개별 평가 정보 수준에서 신뢰도를 측정한다. 실험 결과 신뢰도가 일정수준 이상의 신뢰도를 갖는 평가정보만을 선별하여 고객 프로필을 생성할 경우 추천 시스템의 선호도 예측 정확도가 향상되는 것으로 나타났다.

심층신경망을 활용한 데이터 기반 ESG 성과 예측에 관한 연구: 기업 재무 정보를 중심으로 (Predicting Future ESG Performance using Past Corporate Financial Information: Application of Deep Neural Networks)

  • 김민승;문승환;최성원
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.85-100
    • /
    • 2023
  • 최근 기업의 지속가능경영 역량으로 대변되는 기업 ESG 성과(environmental, social, and corporate governance)가 투자의사 결정에 주요 요인 중 하나로 부각되고 있다. 전통적 ESG 성과 평가 프로세스는 평가기관마다의 고유 기준에 따라 질적 정성적 방식으로 수행되어 그 평가 소요 시간 및 비용이 큰 데 비해 투자의사 결정 시 신뢰성과 예측 가능성 및 적시성에 제약이 존재한다. 이에 본 연구에서는 정량화되고 공개된 기업 재무 정보를 활용하여 머신러닝을 통한 자동화된 기업 ESG 평가 예측을 시도하였다. 심층신경망 기법을 활용해 2019년부터 2021년까지 3년간 한국ESG기준원에서 제공한 1,780건의 ESG 평가에 대하여 총 12종(21,360건)의 시장 공개 재무 정보를 기반으로 예측 모형을 구축한 결과, 제안된 심층신경망 모형은 약 86%의 분류성능을 보여 여타 비교모형 대비 크게 높은 정확도를 나타냈다. 본 연구는 정량적이고 공개된 과거 기업 재무 정보만으로도 자동화된 프로세스를 통해 비교적 정확한 미래 ESG 평가 예측을 달성할 수 있었다는 점에 의의가 크다. 특히 기업 ESG 관련 정보 접근이 상대적으로 불리한 일반 투자자들의 입장에서 볼 때 낮은 비용과 적은 시간 투자로도 기업 ESG 성과 평가에 대한 예측 가능성과 적시성을 향상 시킬 수 있다는 점에 실용적 함의가 있다. 또한 본 연구는 향후 추가적인 국내외 데이터 수집 및 모형 고도화를 통해 기업 ESG 성과 예측 분야에서의 확장이 기대된다.

선택적 오염물 흡수가 가능한 반응재료의 분광정보-다짐 상관성 평가 (Evaluation of Spectral Information-Compaction Relationship for Reactive Material Capable of Selective Absorption of Contaminants)

  • 홍기권;여재용;이기철;유승경
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2023년 정기학술대회 논문집
    • /
    • pp.251-252
    • /
    • 2023
  • 본 연구에서는 오염물의 선택적 흡수가 가능한 반응재료의 분광정보 예측을 위하여 반응재료 배합 조건에 따른 분광정보와 최대건조단위중량의 상관관계를 평가하였다. 그 결과, 배합 조건에 따라 최대건조단위중량 증가하게 되면, 최대분광반사율은 감소하였고, 이를 바탕으로 분광정보 경향의 예측이 가능하였다.

  • PDF

모바일 사용자 작업 예측 모델 및 정확도 평가 기법 (Mobile User Task Prediction Models and Accuracy Evaluation Method)

  • 강영민;옥수열
    • 한국정보통신학회논문지
    • /
    • 제11권9호
    • /
    • pp.1742-1748
    • /
    • 2007
  • 모바일 서비스에 대한 편리한 접근을 제공하고 휴대 장치의 활용 효율을 제고하기 위해서는 제한된 입출력 환경에서 효율적인 작업 선택과 전환 등을 보장할 수 있는 지능적인 사용자 인터페이스가 요구된다. 본 논문은 이러한 지능적 사용자 인터페이스 구현에 필수적인 사용자 작업 예측 모델을 제시하고 이러한 모델을 통한 예측의 정확도를 평가할 수 있는 기법을 제안한다.

전력수요예측을 위한 기상정보 활용성평가 (Evaluation of weather information for electricity demand forecasting)

  • 신이레;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1601-1607
    • /
    • 2016
  • 오늘날 기상정보는 도로공학, 경제학, 환경공학 등 다양한 분야에 활용되고 있다. 본 연구는 전력수요 예측을 위한 기상정보 활용성을 평가하고자 한다. 기상변수는 기상관측소에서 수집되는 기온, 풍속, 습도, 운량, 기압과 기온, 풍속, 상대습도의 합성지수인 체감온도와 불쾌지수가 고려되었다. 전력수요 예측을 위한 시계열모형으로 슬라이딩 창 방식의 TBATS 삼중지수평활모형이 고려되었다. 월 단위 기상변수와 전력수요 예측오차간 상관분석 결과를 보면 시간대별로 차이를 있으나 기온, 불쾌지수, 체감온도가 전력수요 예측오차와 상관성이 높았다. 이에 과거 3년의 월단위 전력수요 예측오차와 기상변수의 회귀모형식으로 전력수요 예측값의 편의를 보정하였다. 온도, 상대습도, 풍속으로 TBATS 모형의 전력수요 예측값을 보정한 결과 TBATS 모형에 비해 RMSE가 약 6.1% 줄었다.

연안도시 평가관리시스템 개발을 위한 시스템 현황 조사 및 분석 (Research and Analysis on System Condition about for Development of Coastal City Evaluation Management System)

  • 한종수;김한태;장문엽;권정호
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2015년 정기학술대회
    • /
    • pp.106-109
    • /
    • 2015
  • 본 논문에서는 최근 지구온난화로 인한 복합적 원인으로 인하여 증가하고 있는 재해현상이 해안과 접해 있는 연안도시 지역에서의 발생 확률이 증가하고 있음을 인지하고 이에 대응하기 위한 피해발생을 예측 및 대응 할 수 있는 시스템의 개발을 위한 국내외 연안도시 평가관리 시스템의 현황의 조사 및 분석을 실시하였다. 국내외 사례조사를 통하여 연안재해 예측관리시스템을 분석한 결과, 시스템 개발에 필요한 착안점을 도출하여 각 시스템의 운영환경, 주요기능 및 화면구성 등을 분석하여 한국형 연안도시 평가관리시스템 개발을 위한 기반을 정립하였다.

  • PDF

로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석 (Evaluation and Analysis of Gwangwon-do Landslide Susceptibility Using Logistic Regression)

  • 연영광
    • 한국지리정보학회지
    • /
    • 제14권4호
    • /
    • pp.116-127
    • /
    • 2011
  • 본 논문에서는 로지스틱 회귀분석 기법을 이용하여 산사태 취약성 분석을 수행하였다. 예측모델의 성능은 모델의 적합도 검증을 통해 사용된 데이터가 모델에 얼마나 잘 반영되어 구축되었는지에 대한 적합도 평가뿐만 아니라 예측성능에 대한 평가가 필요하다. 따라서 이 논문에서는 모델에 대한 객관적인 결과를 얻기 위해 이와 같은 두 가지 측면에 대하여 예측성능 평가를 적용하였다. 연구지역은 2006년도 집중 호우로 많은 산사태가 발생한 강원도 인제 일대를 대상으로 하였다. 산사태 관련인자들은 지형도, 토양도, 임상도로부터 추출하였다. 예측모델에 대한 평가는 누적이득차트 곡선의 하부영역을 계산하였다. 예측모델의 적합도 평가에서는 87.9% 교차검증을 통한 예측정확도 평가 결과 84.8%로 두 평가 결과간의 큰 차이를 보이지 않으며 좋은 성능의 결과를 산출하였다. 이는 산사태와 관련성이 높은 유발인자와 예측모델 성능에서 기인된 결과로 해석 될 수 있다.

DSRC 기반 고속도로 통행 소요시간 예측정보 신뢰성 평가 (Evaluation of Travel Time Prediction Reliability on Highway Using DSRC Data)

  • 한대철;김준현;김승범
    • 한국ITS학회 논문지
    • /
    • 제17권4호
    • /
    • pp.86-98
    • /
    • 2018
  • 한국도로공사는 2015년부터 전국 톨게이트 간 DSRC기반 통행 소요시간 예측정보를 제공하고 있다. 통행 소요시간 예측정보는 고속도로 이용자들의 합리적인 노선 결정을 지원하여 정체상황을 최소화 시킬 수 있다는 측면에서 공공데이터로서 신뢰도가 보장되어야 하며 지속적인 품질관리가 필요하다. 따라서 본 연구에서는 국내외 선행연구를 통해 통행 소요시간 예측정보 평가를 위한 측정지표 기준을 고찰해보았으며, 한국도로공사에서 운영하고 있는 전 노선을 대상으로 소요시간 예측정보를 정량적으로 평가해 보았다. 더불어, 예측오차에 원인을 파악하기 위해 EDA 분석을 수행하였다. 대부분의 노선에서 제공되는 예측정보의 신뢰성은 해당 기준을 충족시키는 것을 알 수 있었다. 다만 다수의 구간으로 구성된 장대 노선의 경우 일부 소수의 구간에서 과대 또는 과소 추정오차 발생이 노선 전체의 예측 정보 신뢰도에 영향을 줄 수 있음을 확인하였으며, 이러한 문제 노선은 상당히 오랜 기간 존치되고 있었음을 알 수 있었다. 본 연구는 국내에서 운영 중인 거의 모든 고속도로 통행시간 예측정보를 정량적으로 평가한 첫 사례라는 점에서 의의가 있다.

시계열 데이터의 양자화된 문자열 변환을 통한 새로운 패턴 분석 기법 (A New Pattern Analysis Methodology for Time-Series Data using Symbol String Quantization)

  • 김형준;윤태진;조환규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.523-526
    • /
    • 2009
  • 시계열 데이터에서 패턴을 분석하는 기법은 많은 발전이 이루어져 오고 있으나 주식시장의 경우 패턴 분석 및 예측에 관련되어 많은 연구가 이루어져 있지 않고 있다. 이는 주가의 등락 자체가 본질적으로 무작위하다고 생각되어지고 있기 때문이다. 본 연구에서는 주가의 등락이 보여주는 무작위성의 정도를 Kolmogorov Complexity로 측정, 그 무작위성의 정도와 본 논문에서 제시한 반전역정렬로 예측하는 주가의 예측 간의 상관관계를 보인다. 이를 위하여 KOSPI 주식 데이터 28년 690개의 데이터를 수집하여 이들 주식 데이터의 등락을 양자화된 문자열로 변환하여 본 논문에서 제시한 방법의 의미를 평가하였다. 그 결과 Kolmogorov Complexity가 높은 경우에는 주가 변동 예측이 어려우며, Kolmogorov Complexity가 낮은 경우에는 주식 변동 예측은 가능하나 등락 예측 율은 단기 예측은 12%이상의 예측율을 보일 수 없으며, 장기 예측의 경우 54%의 예측율로 수렴함을 확인하였다.