• Title/Summary/Keyword: 평가규칙

Search Result 1,025, Processing Time 0.024 seconds

Assessment of dietary behavior of Chinese children using nutrition quotient for children (어린이 영양지수(NQ-C)를 이용한 중국 일부 어린이의 식행동 실태 평가)

  • Huang, Yi-Chun;Kim, Hye-Young
    • Journal of Nutrition and Health
    • /
    • v.47 no.5
    • /
    • pp.342-350
    • /
    • 2014
  • Purpose: This study investigated the eating behaviors of Chinese children using the Nutrition Quotient for Children (NQ-C). Methods: The research subjects were 336 students (166 boys and 170 girls) in the 5th and 6th years at two elementary schools in Shandong Province and Jiangsu Province. Results: The average score of the Children's NQ was good, reaching 69.6 points. The factor scores for balance, moderation, diversity, regularity, and practice were 58.8, 84.9, 63.6, 76.1, and 73.6 points, respectively. Compared with the diagnostic cut-off points of the factors, mean balance, moderation, regularity, and practice scores were above the cut-off points, but diversity score did not meet the cut-off points. Fathers' education level showed positive correlation with the balance, regularity, and NQ scores of the students. Mothers' education level also showed positive correlation with the balance and regularity scores and mother's employment showed positive correlation with regularity score. As the exercise hours per day increased, the NQ score also increased. Conclusion: The questionnaire of NQ-C developed in Korea can be used in assessment of nutrition behavior of Chinese elementary students who have similar eating patterns.

Nonlinear Characteristics of Non-Fuzzy Inference Systems Based on HCM Clustering Algorithm (HCM 클러스터링 알고리즘 기반 비퍼지 추론 시스템의 비선형 특성)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5379-5388
    • /
    • 2012
  • In fuzzy modeling for nonlinear process, the fuzzy rules are typically formed by selection of the input variables, the number of space division and membership functions. The Generation of fuzzy rules for nonlinear processes have the problem that the number of fuzzy rules exponentially increases. To solve this problem, complex nonlinear process can be modeled by generating the fuzzy rules by means of fuzzy division of input space. Therefore, in this paper, rules of non-fuzzy inference systems are generated by partitioning the input space in the scatter form using HCM clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of HCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the consequence parameters of each rule are identified by the standard least-squares method. And lastly, we evaluate the performance and the nonlinear characteristics using the data widely used in nonlinear process. Through this experiment, we showed that high-dimensional nonlinear systems can be modeled by a very small number of rules.

Recommender System using Association Rule and Collaborative Filtering (연관 규칙과 협력적 여과 방식을 이용한 추천 시스템)

  • 이기현;고병진;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.91-103
    • /
    • 2002
  • A collaborative filtering which supports personalized services of users has been common use in existing web sites for increasing the satisfaction of users. A collaborative filtering is demanded that items are estimated more than specified number. Besides, it tends to ignore information of other users as recommending them on the basis of information of partial users who have similar inclination. However, there are valuable hidden information into other users' one. In this paper, we use Association Rule, which is common wide use in Data Mining, with collaborative filtering for the purpose of discovering those information. In addition, this paper proved that Association Rule applied to Recommender System has a effects to recommend users by the relation between groups. In other words, Association Rule based on the history of all users is derived from. and the efficiency of Recommender System is improved by using Association Rule with collaborative filtering.

  • PDF

Fuzzy Rule Optimization Using a Multi-population Genetic Algorithm (다중 개체군 유전자 알고리즘을 이용한 퍼지 규칙 최적화)

  • Lou, See-Yul;Chang, Won-Bin;Kwon, Key-Ho
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.54-61
    • /
    • 1999
  • In this paper, we apply one of modified Genetic Algorithms, a Multi-population Genetic Algorithm(MGA) that improves the genetic diversity to determine the fuzzy rule base and the shape of membership functions. The generation of the fuzzy rule base for fuzzy control, generally, depends on expert's experience. We suggest a new evaluation function to optimize fuzzy rule base. Simulation shows that the proposed method has good result.

  • PDF

Extracting Arrhythmia Classification Fuzzy Rules Using A Neural Network And Wavelet Transform (퍼지 신경망과 웨이블릿 변환을 이용한 부정맥 분류 퍼지규칙의 추출)

  • Kim Deok-Yong;Lim JoonShik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.110-113
    • /
    • 2005
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted fuzzy Membership Funcstions, NEWFM)을 이용하여 심전도 신호로부터 조기심실수축(Premature Ventricular Contraction, PVC)을 판별하는 퍼지규칙을 추출하고 있다. NEWFM은 자기적응적(self adaptive) 가중 퍼지소속함수를 가지고 주어진 입력 데이터로부터 학습하여 퍼지규칙을 생성하고 이를 기반으로 정상 파형과 PVC 파형을 구분한다. 분류 성능 평가를 위하여 MIT/BIH 부정맥 데이터 베이스를 사용하였으며, NEWFM의 입력은 심전도의 파형에 웨이블릿 변환을 적용하여 추출된 웨이블릿 계수를 사용하였다. 여기에 비중복면적 분산 측정법을 적용하여 중요도가 낮은 계수를 제거하면서 최소의 m 개 특징입력만을 사용한 하이퍼박스로 단순화 시킨다. 이러한 방법으로 추출된 2개의 웨이블릿 계수를 사용한 퍼지규칙은 $96\%$의 PVC 분류성능을 보여준다.

  • PDF

Fuzzy Pr/T Net Representation of Interval-valued Fuzzy Set Reasoning (구간값 퍼지집합 추론의 퍼지 Pr/T 네트 표현)

  • Cho, Sang-Yeop
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.783-790
    • /
    • 2002
  • This paper proposes a fuzzy Pr/T net representation of interval-valued fuzzy set reasoning, where fuzzy production rules are used for knowledge representation, and the belief of fuzzy production rules are represented by interval-valued fuzzy sets. The presented interval-valued fuzzy reasoning algorithm is much closer to human intuition and reasoning than other methods because this algorithm uses the proper belief evaluation functions according to fuzzy concepts in fuzzy production rules.

An Effective Large itemset Generation Algorithm (효과적인 빈발 항목 생성 알고리즘T)

  • 채덕진;황부현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.198-200
    • /
    • 2000
  • 대용량의 데이터베이스에서 여러 트랜잭션에 동시에 나타나는 항목들의 모임인 빈발 항목집합을 찾아내는 데이터 마이닝 방법을 연관 규칙 탐사라고 한다. 빈발 항목집합을 찾아내는 데이터 마이닝 방법을 연관 규칙 탐사라고 한다. 빈방 항목집합을 찾아내는 문제는 항목 집합들의 후보 집합을 생성하고 빈발 항목집합의 조건을 충족시키는 후보 집합을 추출함으로써 해결된다. 그리고 이러한 작업은 각각의 빈발 k-항목집합에 대해 k가 증가함에 따라 반복적으로 수행된다. 그러나 연관 규칙 탐사에 관한 기존의 연구는 주로 데이터베이스를 이루는 항목들의 수가 많거나 트랜잭션의 길이가 긴 경우의 대용량 데이터베이스에서 빈발 항목집합의 발견에 초점을 맞추고 있다. 본 논문에서는 데이터베이스를 이루는 전체 항목의 수가 적거나 트랜잭션의 크기가 작은 경우 효과적으로 빈발 항목집합을 찾을 수 있는 연관 규칙 탐사 방법을 제안한다. 그리고 성능 평가를 통하여 제안하는 방법의 성능 및 타당성을 보인다.

  • PDF

Design of Type-2 Fuzzy Logic Systems Using Genetic Algorithms (유전자 알고리즘을 이용한 타입-2 퍼지논리시스템의 설계)

  • 박세환;이광형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.220-223
    • /
    • 2000
  • 타입-2 퍼지집합을 이용하여 퍼지논리시스템(Fuzzy Logic System : FLS)을 구현하기 위한 연구들이 R. I John, N. Karnik, J. Mendel 등에 의해 현재 진행되고 있다. 타입-2 집합을 이용한 타입-2 FLS은 기존의 타입-1 FLS보다 제어규칙이나 소속함순가 가지고 있는 불확실성을 표현하는데 있어서 더 효과적이다. 그러나, 타입-2 FLS 역시 타입-1 FLS이 가지고 있는 문제점인 설계시 전문가에게 의존하여 시간과 비용이 많이 소요되고, 제어기의 구성요소들을 효율적으로 생성하기가 어렵다는 문제점을 더욱 심각하게 가지고 있다. 또한, 그 문제점을 해결하기 위한 연구들도 아직 미진한 상태이다. 본 논문에서는 타입-2 FLS의 설계를 위해 유전자 알고리즘을 사용하는 방법을 제안한다. 타입-2 FLS를 설계하기 위해서는 소속함수와 제어규칙을 생성하여야 한다. 본 논문에서는 유전자 알고리즘을 사용하여 타입-2 퍼지제어규칙과 소속함수를 설계하는 방법을 제안한다. 먼저, 유전자 알고리즘에서 사용할 수 있는 유전자의 형태로 타입-2 퍼지제어규칙과 소속함수를 표현하기 위한 인코딩방법을 제안하고, 각각의 염색체를 진화시키기 위한 교차 연산자와 돌연변이 연산자를 정의한다. 그리고, 제안된 방법을 함수근사문제에 적용하여 유효성과 성능을 평가, 검증한다.

  • PDF

Mining Association Rules on Significant Rare Data using Relative Support (상대 지지도를 이용한 의미 있는 희소 항목에 대한 연관 규칙 탐사 기법)

  • Ha, Dan-Shim;Hwang, Bu-Hyun
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.577-586
    • /
    • 2001
  • Recently data mining, which is analyzing the stored data and discovering potential knowledge and information in large database is a key research topic in database research data In this paper, we study methods of discovering association rules which are one of data mining techniques. And we propose a technique of discovering association rules using the relative support to consider significant rare data which have the high relative support among some data. And we compare and evaluate existing methods and the proposed method of discovering association rules for discovering significant rare data.

  • PDF

Temporal Logic Application Technique for Solving Spatio-temporal Problem in BM-DEVS Modeling And Simulation Environment (BM-DEVS 모델링과 시뮬레이션 환경에서의 시공간 문제 해결을 위한 시간 논리 적용 기법)

  • Jungsub Ahn;Taeho Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.47-49
    • /
    • 2023
  • 사회적으로 복잡한 문제들이 시공간 형태로 문제 표현이 가능하고 이를 활용하여 문제를 해결하기 위한 연구들이 진행 중이다. 특히, 시뮬레이션 이론 중 하나인 BM-DEVS는 시공간 논리를 적용하여 실세계에서 일어나는 문제들을 시공간 규칙으로써 표현하였고 이를 모델에 적용하여 시스템에서 행위를 모니터링한다. 하지만 BM-DEVS에서는 시스템 차원에서 정의된 시공간 규칙들을 평가하기 위하여 Büchi 오토마타로의 변환과 오토마타를 모델들에 반영할 수 있어야 한다. 이를 위하여 시스템을 구축하는 모델러가 직접 규칙을 오토마타로 변환하는 작업을 해야하며 이에 대한 오토마타를 모델에 적용하기까지는 많은 시간이 소요된다. 이러한 문제를 해결하기 위해 본 논문에서는 모델링의 단순화를 위하여 시공간 규칙을 모델들에 자동적으로 적용하는 방법에 대하여 소개한다.

  • PDF