• Title/Summary/Keyword: 편집 거리

Search Result 71, Processing Time 0.029 seconds

Improved Parallel Computation for Extended Edit Distances (개선된 확장편집거리 병렬계산)

  • Kim, Youngho;Sim, Jeong Seop
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.62-65
    • /
    • 2014
  • 근사문자열매칭 알고리즘은 검색엔진, 컴퓨터보안, 생물정보학 등 많은 분야에서 연구되고 있다. 근사문자열매칭에서는 거리함수를 이용하여 오차를 측정한다. 거리함수로는 해밍거리, 편집거리, 확장편집거리 등이 있다. 이때 확장편집거리는 mn) 시간과 공간에 계산할 수 있으며, 최근 m개의 쓰레드를 이용하여 O(m+n) 시간과 O(mn) 공간을 이용한 병렬알고리즘이 제시되었다. 본 논문에서는 기존의 확장편집거리를 계산하는 병렬알고리즘을 개선한 효율적인 병렬알고리즘을 제시한다. 기존의 병렬알고리즘을 최적화하고, 기존의 병렬알고리즘, 전역메모리만 사용한 최적화된 병렬알고리즘, 공유메모리를 활용한 최적화된 병렬알고리즘의 수행시간을 비교한다. 실험 결과, 개선된 병렬알고리즘이 기존의 병렬알고리즘보다 전처리단계에서 16 ~ 63배 이상, 모든 단계에 대해 19 ~ 24배 이상 빠른 수행시간을 보였다.

Edit Distance Problem for the Korean Alphabet (한글에 대한 편집 거리 문제)

  • Roh, Kang-Ho;Kim, Jin-Wook;Kim, Eun-Sang;Park, Kun-Soo;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • The edit distance problem is finding the minimum number of edit operations to transform a string into another one. It is one of the important problems in algorithm research and there are some algorithms that compute an optimal edit distance for the one-dimensional languages such as the English alphabet. However, there are a few researches to find the edit distance for the more complicated language such as the Korean or Chinese alphabet. In this paper, we define the measure of the edit distance for the Korean alphabet and present an algorithm for the edit distance problem for the Korean alphabet.

Edit Distance Problem for the Korean Alphabet with Phoneme Classification System (음소의 분류 체계를 이용한 한글 편집 거리 알고리즘)

  • Roh, Kang-Ho;Park, Kun-Soo;Cho, Hwan-Gue;Chang, So-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.6
    • /
    • pp.323-329
    • /
    • 2010
  • The edit distance problem is finding the minimum number of edit operations to transform a string into another one. It is one of the important problems in algorithm research and there are some algorithms that compute an optimal edit distance for the one-dimensional languages such as the English alphabet. However, there are a few researches to find the edit distance for the more complicated language such as the Korean or Chinese alphabet. In this paper, we define the measure of the edit distance for the Korean alphabet with the phoneme classification system to improve the previous edit distance algorithm and present an algorithm for the edit distance problem for the Korean alphabet.

A Sequence Similarity Measure Considering the Product Taxonomy in Transaction Data (구매이력 데이터에서 상품 분류 체계를 고려한 시퀀스 유사도 측정 기법)

  • Yang, Yu-Jeong;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.367-370
    • /
    • 2019
  • 본 논문은 구매이력 데이터에서 상품간의 분류 체계를 고려하여 시퀀스 간의 유사도를 계산하는 새로운 방법을 제안한다. 시퀀스란 두 항목간의 순서가 존재하는 데이터를 의미한다. 항목 간의 선후관계가 중요한 시퀀스 데이터에서는 두 시퀀스 간의 유사도를 정확히 정의하는 것이 중요하다. 본 논문에서는 대표적인 시퀀스 유사도 측정 알고리즘인 편집 거리 알고리즘을 활용하여 구매이력 데이터에서 시퀀스 간의 유사도를 정의한다. 상품은 상품의 특성에 따라 항목 분류 체계에서 여러 범주로 분류된다. 이 경우 기존의 편집 거리 알고리즘에서 문자의 일치유무에 따라 단순히 0 또는 1을 부여하는 것은 부정확하다. 따라서 본 논문은 편집 거리 알고리즘의 수정 연산 중 대체 연산 비용 계산 시 항목 분류 트리를 사용하여 연산 비용이 0 에서 1 사이의 값을 가지도록 세분화하였다. 실험 결과 제안 방법은 대체 연산 비용 계산 시 두 문자가 다르면 단순히 1 을 부여하는 기존의 편집 거리 알고리즘에 비해 시퀀스 간의 유사도를 더 정확하게 계산함을 확인하였다.

Parallel Computation For The Edit Distance Based On The Four-Russians' Algorithm (4-러시안 알고리즘 기반의 편집거리 병렬계산)

  • Kim, Young Ho;Jeong, Ju-Hui;Kang, Dae Woong;Sim, Jeong Seop
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • Approximate string matching problems have been studied in diverse fields. Recently, fast approximate string matching algorithms are being used to reduce the time and costs for the next generation sequencing. To measure the amounts of errors between two strings, we use a distance function such as the edit distance. Given two strings X(|X| = m) and Y(|Y| = n) over an alphabet ${\Sigma}$, the edit distance between X and Y is the minimum number of edit operations to convert X into Y. The edit distance between X and Y can be computed using the well-known dynamic programming technique in O(mn) time and space. The edit distance also can be computed using the Four-Russians' algorithm whose preprocessing step runs in $O((3{\mid}{\Sigma}{\mid})^{2t}t^2)$ time and $O((3{\mid}{\Sigma}{\mid})^{2t}t)$ space and the computation step runs in O(mn/t) time and O(mn) space where t represents the size of the block. In this paper, we present a parallelized version of the computation step of the Four-Russians' algorithm. Our algorithm computes the edit distance between X and Y in O(m+n) time using m/t threads. Then we implemented both the sequential version and our parallelized version of the Four-Russians' algorithm using CUDA to compare the execution times. When t = 1 and t = 2, our algorithm runs about 10 times and 3 times faster than the sequential algorithm, respectively.

Modified Edit Distance Method for Finding Similar Words in Various Smartphone Keypad Environment (다양한 스마트폰 키패드 환경에서 유사 단어 검색을 위한 수정된 편집 거리 계산 방법)

  • Song, Yeong-Kil;Kim, Hark-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.12-18
    • /
    • 2011
  • Most smartphone use virtual keypads based on touch-pad. The virtual keypads often make typographical errors because of the physical limitations of device such as small screen and limited input methods. To resolve this problem, many similar word-finding methods have been studied. In the paper, we propose an edit distance method (a well-known string similarity measure) that is modified to consider various types of virtual keypads. The proposed method effectively covers typographical errors in various keypads by converting an input string into a physical key sequence and by reflecting characteristics of virtual keypads to edit scores. In the experiments with various keypads, the proposed method showed better performances than a typical edit distance method.

Effective Image Clustering Using Shock Graphsm (쇼크 그래프를 이용한 효과적인 영상 군집화)

  • Jang, Seok-Woo;Khanam, Solima;Paik, Woo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.249-252
    • /
    • 2011
  • 본 논문에서는 쇼크(shock) 그래프 기반의 뼈대 특징을 이용하여 모양 정보를 분류하기 위해 그래프 편집 거리(edit cost) 기반의 k-means 군집화 알고리즘을 적용하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 질의 영상과 대상 데이터베이스 영상으로부터 뼈대 기반의 쇼크 그래프를 추출한 후 종점(end points)과 분기점(branch points)을 가중치를 이용하여 적응적으로 선택한다. 그런 다음, 두 영상 사이의 편집 거리를 구하여 이를 k-means 군집화 알고리즘의 거리 척도로 적용함으로써 대용량의 영상을 보다 효과적으로 분류한다. 성능을 평가하기 위해서 제안된 알고리즘을 MPEG-7 데이터베이스에 적용하였으며, 그 결과 제안된 영상 분류 방법이 기존의 영상 분류 방법에 비해서 보다 효과적으로 모양 기반의 영상을 분류하였음을 확인하였다.

  • PDF

Parallel Computation for Extended Edit Distances Using the Shared Memory on GPU (GPU의 공유메모리를 활용한 확장편집거리 병렬계산)

  • Kim, Youngho;Na, Joong Chae;Sim, Jeong Seop
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.7
    • /
    • pp.213-218
    • /
    • 2015
  • Given two strings X and Y (|X|=m, |Y|=n) over an alphabet ${\Sigma}$, the extended edit distance between X and Y can be computed using dynamic programming in O(mn) time and space. Recently, a parallel algorithm that takes O(m+n) time and O(mn) space using m threads to compute the extended edit distance between X and Y was presented. In this paper, we present an improved parallel algorithm using the shared memory on GPU. The experimental results show that our parallel algorithm runs about 19~25 times faster than the previous parallel algorithm.

Finding the minimum period distance based on distance sum (거리합기반 문자열의 최소 주기거리 찾기)

  • Jeong, Ju-Hui;Kim, Young-Ho;Sim, Jeong-Seop
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.391-393
    • /
    • 2012
  • 반복적인 문자열에 대한 연구는 압축알고리즘이나 모티프검출, 염기서열 분석 등 다양한 분야와 관련되어 연구되고 있다. 반복문자열 연구 중에서도 어느 정도의 불일치를 허용하는 근사반복문자열 연구가 활발히 이루어지고 있다. 본 논문에서는 길이가 각각 m과 n인 문자열 p와 x가 주어졌을 때, p의 x에 대한 거리합기반 근사주기에 대해 정의하고 최소 주기거리를 찾는 문제를 제시한다. 그리고 가중편집거리를 사용했을 때 O($mn^2$)시간, 편집거리를 사용했을 때 O(mn)시간, 해밍거리를 사용했을 때 O(n)시간에 문제를 해결하는 알고리즘을 제시한다.

Improvement of an algorithm for tree-editing distance measure regarding the features of HTML (HTML특성을 고려한 트리 편집 거리 측정 알고리즘의 개선)

  • Kim, Yeon-Jung;Park, Jea-Hyun;Choi, Joong-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.718-720
    • /
    • 2005
  • 웹 문서를 대상으로 하는 정보 추출이나 웹 마이닝에 관한 연구가 활발히 진행되면서 특히, 웹에서 나타나는 구조적 패턴을 이용해 정보를 추출하는 방법에 대한 연구가 이루어 지고 있다. 기존의 연구는 HTML을 단순 문자열로 취급하였으나 연구가 거듭됨에 따라 트리로 접근하는 방안에 대해 논의가 되었으며 성능 또한 우수한 것으로 평가되고 있다. 하지만, 기존의 트리 편집 거리의 기법은 모든 노드가 동일한 값을 가진다는 가정하에 진행되는 것으로 HTML의 특성과는 맞지 않다. HTMI은 브라우저에 정보를 보여주기 위한 도구이며 실제 브라우저에 보여지는 내용의 비율이 트리에서의 노드의 비율과 항상 같은 것은 아니기 때문이다. 이 논문에서는 위와 같은 HTML의 특성을 이용하여 노드가 가진 정보의 크기에 따라 서로 다른 비율의 기여도를 부여하고, 이를 고려한 개선된 트리 편집 거리 측정 알고리즘을 이용하여 좀더 나은 패턴 추출 방법을 제안하고자 한다.

  • PDF