• Title/Summary/Keyword: 편심하중 저항성

Search Result 8, Processing Time 0.025 seconds

An Evaluation of Blast Resistance Capacity of RC Columns under Eccentric Load (편심하중을 받는 철근콘크리트 기둥의 폭발 저항성 평가)

  • Kim, Han-Soo;Lee, Jae-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.148-151
    • /
    • 2011
  • 현재 방폭설계 관련 설계지침은 기둥제거시나리오를 이용한 대체하중경로법을 주로 적용하고 있지만, 실제로 폭발이 발생하였을 때 기둥의 완전한 파괴가 일어나지 않을 경우 이 방식을 적용하는 것은 적합하지 않다. 따라서 본 논문에서는 비선형 동적 해석 프로그램인 AUTODYN을 이용해 편심하중을 받는 철근 콘크리트 기둥의 잔존 폭발 저항 성능을 평가하는 방식을 제안하였다. 해석결과를 비교해보면 TNT양과 축하중이 클수록 철근콘크리트 기둥의 잔존 폭발 저항 성능이 감소되었다. 이것은 폭발이 발생하기전의 기둥의 편심하중에 의한 응력상태에 따라 폭발 저항 성능이 달라짐을 알 수 있다.

  • PDF

Load-carrying Capacity of Thermal Prestressed Steel Beam with Eccentric Bracket (편심 브라켓 설치 온도프리스트레싱 강재보의 하중저항 성능)

  • Kim, Sang-Hyo;Jung, Chi-Young;Choi, Kyu-Tae;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • This study evaluates the load-carrying capacity of a thermal prestressed steel beam with an eccentric bracket. The steel beam that is proposed in this study has an eccentrically installed cover plate through application of the eccentric bracket. The eccentric bracket helps the steel beam achieve greater sectional stiffness and more efficiently induces prestress. A material non-linear characteristic applied finite element analysis was also conducted to check the validity of the experiments. The results of this study showed that the structural stiffness, yield load, and ultimate strength of the TPSM-applied steel beam with the eccentric bracket increased due to the eccentricity of the cover plate.

Eccentric Load Resistance of Washbasin Attached to ALC Block Wall (ALC 블록 벽체의 세면기 부착에 따른 편심하중 저항성 평가)

  • Park, Jun-Hyeong;Lee, Duck-Ju;Kim, Hyun;Chol, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.12-13
    • /
    • 2019
  • The bearing capacity of the wall against the eccentric load when the washbasin was attached on the ALC block wall was tested. Test methods are BS EN 14688 and BS 5234-2. Tests in accordance with BS EN 14688 showed that the holding capacity of steel was much stronger and more stable when HA-II (chemical anchor) was used than when the washbasin was fixed using HA-I (plastic anchor). As an experimental result according to the Annex K of BS 5234-2, the bearing capacity of ALC block wall corresponded to the "stage in which the force works(performance grade) 1,500N" for all of the cases where a washbasin is fixed using two types of the wall's dedicated anchors(HA-I and HA-II).

  • PDF

Hybrid Damper of Steel Strip and Spring (강재 스트립과 스프링의 혼합형 댐퍼)

  • Kim, Dong-Baek;Lee, In-Duk;Lee, Jae-Won;Kim, Jong-Hoon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.299-300
    • /
    • 2022
  • 구조물의 내진보강방법 중에서 가장 널리 이용되는 방법인 강재 이력형 감쇠장치는 수평하중에 대한 응력-변위 곡선을 이용하여 지진 에너지를 소산시키는 방법인데, 이 경우 편심하중 등에 의해서 부재가 면 외 방향으로 거동하여 응력-변위곡선이 불규칙하여 그 결과의 신뢰성이 떨어지는 경우가 있다. 이러한 형상을 방지하기 위해서는 별도의 채널(Channel)을 시공하는 불편함을 감수해야 하며, 또한 수평력이 반복적으로 작용할 때 그 효과를 장담할 수 없는 문제점이 있다. 본 연구에서는 강재 스트립과 스프링을 결합한 댐퍼를 고안하여 스프링은 탄성변형을, 강재 스트립은 소성변형을 받게 하는 혼합형 댐퍼를 개발하고자한다. 여기서, 스프링은 복원력으로 작용하여 반복하중에 대한 저항성을 키우고 강재 스트립의 하중변위 곡선을 규칙적으로 하는 역할을 수행하게 되며 에너지 소산량을 계산할 때 편리함과 정확도를 높이고자 한다. 강재 스트립의 폭과 길이는 일정하지만 두께를 변화시켜서 5종류를 선택하였으며, 댐퍼 1개당 3개의 스트립을 정삼각형 형태로 배치하고 그 중심에 상당한 강성을 갖는 스프링을 갖는 형태로 제작하였다. 댐퍼 시험체는 5개를 제작한 후, 이 댐퍼를 구조물에 배치하였을 때의 지진에 대한 에너지 소산량과 부재력을 검토하여 댐퍼의 안전성(Safety)를 검증하고자 한다.

  • PDF

Reliability Analysis of Composite Girder Designed by LRFD Method for Positive Flexure (하중저항계수설계법(LRFD)으로 설계된 강합성 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong-Ku;Kim, Cheon-Yong;Paik, In-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.539-546
    • /
    • 2006
  • The reliability analysis of simply-supported composite plate girder and box girder bridges under positive flexure is performed. The bridges are designed based on the AASHTO-LRFD specification. A performance function for flexural failure is expressed as a function of such random variables as flexural resistance of composite section and design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 samples of domestic structural steel products are used. Several different values of statistical parameters with the bias factor in the range of 0.95-1.05 and the coefficient of variation in the range of 0.15-0.25 are used for the live-load moment. Due to the lack of available domestic measured data on the dead load moment, the same values of statistical properties used in the calibration of AASHTO-LRFD are applied. The reliability indices for the composite plate girder and box girder bridges with various span lengths are calculated by applying the Rackwitz-Fiessler technique.

Inelastic Seismic Response of Asymmetric-Plan Self-Centering Energy Dissipative Braced Frames (비정형 셀프센터링 가새골조의 비탄성 지진응답)

  • Kim, Jin-Koo;Christopoulos, C.;Choi, Hyun-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2008
  • A self-centering energy-dissipative(SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy such as the buckling restrained brace(BRB) system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In order to investigate the effects of torsion on the SCED brace and BRB systems, nonlinear time history analyses were used to compare the responses of 3D model structures with three different amounts of frame eccentricity. The results of the analysis showed that the interstory drifts of SCED braced frames are more uniform than those of BRB frames, without regard to irregularity. The residual drift and residual rotation responses tended to decrease as irregularity increased. For medium-rise structures, the drift concentration factors(DCFs) for SCED systems were lower than those for BRB frames. This means that SCED-braced frames deform in a more uniform manner with respect to building height. The effect of the torsional irregularity on the magnitude of the DCFs was small.

Connection Resistance of Mechanical Joint using Connection plate for Improvement of Connectivity between PHC piles (PHC파일간 연결 시공성 개선 이음판형 기계적 연결부의 연결저항)

  • Ahn, Jin-Hee;Moon, Hong-duk;Ha, Min-Gyun;Cho, Kwang-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.25-32
    • /
    • 2019
  • Welded joints and mechanical joints using bolt connection have been used as a pile-to-pile connecting method for PHC piles. These PHC pile joint methods may have difficulty in securing connecting quality and connecting performance in PHC pile joining process. Therefore, this study proposes a non-welded connection plate type mechanical PHC pile joint to improve the disadvantages of existing PHC pile connection methods and to secure the connection performance of PHC pile joint. Its connection performance was evaluated from nonlinear FE analysis and loading tests for actual PHC piles with suggested pile joints. From nonlinear FE analysis for the proposed PHC pile joint, it was evaluated to have sufficient connection performance under flexural, compressive, tensile, shear, and eccentric compressive load condition. PHC piles connected by the suggested connection plate type mechanical PHC pile joint show that they show stable linear behaviors for the crack moment and the flexural moment level of the PHC pile. Therefore, the proposed a non-welded connection plate type mechanical PHC pile joint can secure sufficient connection performance in PHC pile.

Generalization of an Evaluation Formula for Bearing Pressures on the Rubble Mound of Gravity-Based Harbor Structures (중력식 항만구조물의 사석마운드 지반반력 평가식의 일반화)

  • Woo-Sun Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.128-137
    • /
    • 2023
  • In this study, the bearing pressure on the rubble mound of a gravity-based harbor structure with an arbitrarily shaped bottom was targeted. Assuming that the bottom of the structure is a rigid body, the rubble mound was modeled as a linear spring uniformly distributed on the bottom that resists compression only, and the bearing pressure evaluation formula was derived. It was confirmed that there were no errors in the derivation process by showing that when the bottom was square, the derived equation was converted to the equation used in the design. In addition, the validity of the derived equation was proven by examining the behavior and convergence value of the bearing pressure when an arbitrarily shaped bottom converges into a square one. In order to examine the adequacy of the method used in the current design, the end bearing pressure for the pre-designed breakwater cross-section was calculated and compared with the values in the design document. As a result, it was shown that the method used for design was not appropriate as it gave unsafe results. In particular, the difference was larger when the eccentricity of the vertical load was large, such as in the case of extreme design conditions.