• Title/Summary/Keyword: 편심전단강도

Search Result 27, Processing Time 0.022 seconds

The Failure Model of RC Flat Plates Considering Interrelation between Punching Shear and Unbalanced Moment (불균형모멘트와 펀칭전단의 상관관계를 고려한 철근콘크리트 무량판 슬래브의 파괴모델)

  • Choi, Jung-Wook;Song, Jin-Kyu;Song, Ho-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.523-530
    • /
    • 2008
  • In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress in direct shear occurred by gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. In this paper, a model considering interrelation between unbalanced moment and punching shear was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment and punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, effective width enlargement factors for deciding the unbalanced moment strength of flat plates with shear reinforcements were proposed. The interrelation model proposed in this paper is very effective for the prediction of the behavior of slab-column connection because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(2) (고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구(2))

  • Shin, Kyung-Jae;Kwak, Myong-Keun;Bae, Kyu-Woong;Oh, Young-Suk;Moon, Jung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.603-610
    • /
    • 2006
  • The external unbonded strengthening offers advantages in speed and simplicity of installation over other strengthening techniques. Unlike externally bonded steel plate or carbon fiber sheet, surface preparation of the concrete for installation of high-tension bar is not required and installation is not affected by environmental conditions. Anchoring pin or anchoring plate are installed at the end of beam to connect the high-tension bar to concrete beam. The deviator are used in order that supplementary external bars would follow the curvature of the tested beam. A set often laboratory tests on reinforced concrete beam strengthened using the technique are reported. The main test parameters are the section area of strengthening bar, the depth of deviator and the number of deviators. The paper provides a general description of structural behavior of beams strengthened using the technique. The test result of strengthened beam are compared with those from a reference specimen. It is shown that the reinforcing technique can provide greater strength enhancements to unstrengthened beam and that the provision of deviator enhances efficiency. The ultimate moment of specimen with two deviators was higher than that of specimens with one deviator. It is also shown that the external bars enhance strength of beams in shear.

Estimating Concrete Compressive Strength Using Shear Wave Velocity (전단파 속도를 이용한 콘크리트의 압축강도 추정연구)

  • An, Ji-Hwan;Nam, Jeong-Hee;Kwon, Soo-Ahn;Joh, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Compressive strength of concrete has been regarded as a very important parameter of the quality control both in new and existing concrete pavement. It has been used a lot as the concrete strength evaluation both in the various-mixture-using laboratory and construction field using the same mixture. An error usually occurs in the test experiments of the strength, even in the test experiments with evenly mixed and compacted specimens of the compressive strength. It is caused by the 'manually operated' compressing testing, or by the specimens preparation with eccentricity. When compressive strength of evenly mixed concrete is investigated by the curing ages at the construction field, there have to be lots of specimens. And it needs much labor and cost. To substitute the endlessly repeated test experiments of compressive strength, presumption of compressive strength, by nondestructive tests, is needed. In this study, elastic waves were used among various nondestructive tests. Compressive strength of concrete was presumed according to the curing ages, by using the shear wave velocity which is not affected by restricted conditions. In the result, shear wave velocity is very closely related to the compressive strength at the evenly mixed concrete.

  • PDF

Assessment and Recommendation of Fatigue Design Codes for Stud Shear Connectors in Composite Bridge (강합성 교량 스터드 전단연결재의 피로 설계식 평가 및 제안)

  • Lee, Kyoung-Chan;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.15-21
    • /
    • 2009
  • The design of the stud shear connector of a bridge structure is mostly controlled by the fatigue resistance not by the strength, if it is followed by AASHTO LRFD Bridge Design Specification. This fatigue design code in AASHTO LRFD is based on the research work done by Slutter and Fisher in 1966. These tests seemingly underestimated the fatigue resistance of connectors because of the inherent eccentricity of the one-face test setup which results additional tension forces to the stud. In addition, the stress ranges were not plotted in the log scale, because it was not known at that time that the fatigue resistance of the welded steel structures has a linear relationship of log scales of stress range and number of loading cycles. This study evaluates the test data produced by the Slutter and Fischer, and plot the data on the proper manner. The fatigue push-out test data produced recently by many other researches all around the world are gathered and analyzed, furthermore a design curve is recommended.

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.

Ductility Confinement of RC Rectangular Shear Wall (장방형 철근 콘크리트 전단벽의 연성 보강)

  • 강수민;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.530-539
    • /
    • 2002
  • In designing the boundary confinement of shear walls, the current design provisions and recommendations are empirical and prescriptive; they specify a certain confinement length and details, regardless of the actual requirement of ductility Therefore, they are inappropriate to the performance based-design. The purpose of the present study is to develop a ductility design method that Is applicable to the performance based-design of shear wall. For the purpose, experimental studies were performed to investigate variations in the ductility of shear walls with the length of the boundary confinement. Five specimens modeling the compressive zone of cross sections with different confinement area were tested against eccentric vertical load. Through the experimental studies, strength, ductility, and failure mode of the compression zone were investigated. In addition, nonlinear numerical analyses for the overall cross-sections of shear wall were performed to investigate variations of the stress and strain profiles with the length of compression zone. On the basis of the experimental and numerical studies, a ductility design method for shear wall was developed. By using the proposed design method, for a given ductility demand, the area of lateral confinement and corresponding reinforcement ratio can be precisely determined so that the ductile behavior and economical design are assured.

Numerical Study on Interior Flat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부에 대한 해석연구)

  • 최경규;황영현;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.949-960
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to punching shear failure of the slab-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, due to complexity in the behavior and difficulty in simulating the actual load and boundary conditions of the flat plate system, it is not easy to obtain reliable data regarding to the strength and ductility from the previous experimental studies. In the present study, a numerical study was performed for interior connections of continuous flat plate. For the purpose, a computer program for nonlinear FE analyses was developed, and the validity was verified by comparisons with the existing experimental results. Through the parametric studies, the variations of bending moment, shear, and torsional moment around the connection were investigated. Based on the findings of the numerical studies, the aspects which need to be improved in current design methods were discussed. The results of the present study will be used for developing a design method for the flat plate-column connection in the companion paper.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

Ultimate Strength Interaction of Steel/Concrete Composite Trapezoidal Box Girders Subjected to Concurrent Action of Bending and Torsion (휨과 비틀림을 동시에 받는 강/콘크리트 합성 제형 박스거더의 극한강도 상호작용)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.465-475
    • /
    • 2010
  • In the horizontally curved bridges, girders are subjected to the combined action of vertical bending and torsion due to their curvatures without any eccentric loads. As subjected to bending and torsion, the ultimate strength of steel/concrete composite box girders are limited by the diagonal tensile stress in the deck concrete induced by the St. Venant torsion. To determine the ultimate strength of composite box girders in bending and torsion and their interactions, this study conducted a 3-dimensional FEA and classical strength of materials investigation. Using ABAQUS, the FEA fully utilized advanced nonlinear analysis techniques simulating material/geometrical nonlinearity and post-cracking behaviors. The ultimate strength from numerical data were compared with theoretically derived values. Concurrent compressive stresses in the concrete deck improve the shear-resisting capacity of concrete, thereby resulting in an increased torsional resistance of the composite box girder in positive bending. The proposed interaction equation is very simple yet it provides a rational lower bound in determining the ultimate strength of concrete/steel composite box girders.