• Title/Summary/Keyword: 펠릿

Search Result 217, Processing Time 0.025 seconds

Deposition of Polytetrafluoroethylene Thin Films by IR-pulsed Laser Ablation (Nd:YAG 레이저에 의한 폴리테트라플루오르에틸렌 박막 증착)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • PTFE (polytetrafluoroethylene) thin films were prepared from the pellets of the graphite doped PTFE via pulsed laser ablation with 1064 nm Nd:YAG laser. The graphite powder converts the absorbed photon energy into thermal energy which is transmitted to nearby PTFE. The PTFE is decomposed by thermal process. The deposited films were transparent and crystalline. SEM (scanning electron microscopy) and AFM (atomic force microscopy) analyses indicated that the film surface morphology changed to fibrous structure with increasing thickness. The fluorine to carbon ratios of the film were 1.7 and molecular axis was parallel with (100) Si-wafer substrate. These results obtained by XPS (X-ray photoelectron spectroscopy), FTIR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction).

  • PDF

A study on the possibility that livestock waste to RDF (축산폐기물의 고형연료화 가능성에 관한 연구)

  • Kim, Seong-Jung;Lee, Je-Hak
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • This research conducted component analysis of pellet fuel using livestock waste and agricultural by-product and combustion characteristics. As the result of analyzing the characteristics of solid fuel using livestock waste, three components, element analysis, and heating value were suitable for the standard of solid fuel. In addition, content of ash consisted of high concentration of K, P, Na indicating the possibile usage as a soil conditioner. However, it was not suitable for solid fuel using only livestock waste due to the relatively low heating value. To improve the heating value and early ignition, we mixed agricultural by-products (i.e., chaff and sawdust) into livestock waste. The mixed material showed significant increase of combustibles and heating value with decrease of moisture content compared to the livestock waste only.

Potential of Torrified Tulip-tree for the Production of Solid Bio-fuels (백합나무의 반탄화 처리를 이용한 고체연료화 가능성 조사)

  • Ahn, Byoung Jun;Yang, In;Kim, Sang Tae;Park, Daehak
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.40-50
    • /
    • 2013
  • This study was performed to investigate the potential of torrefied tulip tree (TT) for the production of pellets. For this purpose, chemical composition and fuel characteristics of torrefied TT were examined. In addition, pellets were fabricated by using sawdust of torrefied TT chip, and durability of the pellet was measured. Lignin content of torrefied TT was higher than that of non-torrefied TT, and increased with the increases of torrefaction temperature and time. Fuel characteristics of torrefied TT were affected by torrefied conditions, and the characteristics were influenced more by torrefaction temperature than by torrefaction time. Higher heating value (HHV) and ash content (AC) of torrefied tulip tree increased with increasing torrefaction temperature, and the values were much higher than HHV and AC values of non-torrefied TT. Durability of pellets fabricated with $230^{\circ}C$- and $250^{\circ}C$-torrefied TT was higher than that of $270^{\circ}C$-torrefied TT, and the value exceeded the minimum requirement (-97.50%) of the 1st-grade pellet standard designated by Korea Forest Research Institute. Based on the results, torrefaction treatment of $250^{\circ}C/50min$ to TT might be a optimal condition for the production of TT pellets considering the mass balance and fuel characteristics of TT as well as the durability of the pellets. Thus, it is confirmed that torrefied TT can be used as a raw material for the production of bio-pellets.

Analysis of Traditional Process for Yukwa Making, a Korean Puffed Rice Snack(II) Pelleting, Drying, Conditioning and Additives (전통 유과가공공정의 분석(II): 반데기성형, 건조, 수분조절 및 부재료의 첨가)

  • Kang, Sun-Hee;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.818-823
    • /
    • 2002
  • Effects of pelleting, drying, conditioning, and additives on the characteristics of Yukwa (fried pellet) were determined. RVA maximum paste viscosity of Bandegi (waxy rice pellet) was the highest after 2 days of moisture conditioning process, and decreased 2 days later. Air bubbles in Bandegi were distributed uniformly but were not significantly affected by conditioning time. For higher expansion and softer texture of Yukwa, the optimum moisture content of dried and conditioned Bandegi was $14{\sim}17%$. The addition of soymilk and 25% alcohol (Soju) as additives was also effective for achieving higher expansion and soft texture of Yukwa, respectively. Larger air cells were distributed in the center and smaller ones on the edge of Yukwa.

High-pressure Compaction of Sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) for Densified Fuel (고밀화에 의한 현사시 톱밥의 고형연료화)

  • 한규성;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • Recently, densified pellet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess Hyunsasi-poplar clones as fuels. Hot-press process was adopted for compaction of sawdust and compaction was performed under temperature from 100 to 180$^{\circ}C$, at pressure of 250 to 1000 kgf/$\textrm{cm}^2$, and for 2.5 to 10 minutes. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over 1.2 g/$\textrm{cm}^2$ and below 0.5%, respectively. When the press-temperature is over 160$^{\circ}C$, densified fuels with density eve. 1.2 g/$\textrm{cm}^2$ and with fines below 0.5% can be produced. And the pressure over 750 kgf/$\textrm{cm}^2$ was effective for this production. It was found that the optimum press condition for preparation of densified fuel was 180$^{\circ}C$ -1000 kgf/$\textrm{cm}^2$ minutes.

  • PDF

Thermal Characteristics of Pellets made of Agricultural and Forest by-products (농림부산물을 이용한 펠릿의 열적 특성)

  • Kang, Y.K.;Kang, G.C.;Kim, J.K.;Kim, Y.H.;Jang, J.K.;Ryu, Y.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.61-65
    • /
    • 2011
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce the large amount of energy from biomass around the world. In this study, to obtain basic data for practical application of agricultural and forest by-products as fuel of heating system in agriculture, agricultural and forest biomass resources were surveyed, the pelletizer with capacity of $50\;kg{\cdot}h^{-1}$ was designed and manufactured and pellets were made by the pelletizer. High heating value, ash content, etc. of pellets made of agricultural and forest by-products were estimated. Straw of rice was the largest agricultural biomass in 2009 and the total amount of rice straw converted into energy of $299{\times}10^3$ TOE. And in 2009, amount of forest by-product converted into energy of $9,579{\times}10^3$ TOE. High heating values of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk were 16,034, 16,026, 16,089, 15,650, $15,044\;kJ{\cdot}kg^{-1}$ respectively. High heating values of pellets made of agricultural by-products were average 83.6% compared to that of wood pellet. Average bulk density of pellets made of stem and seed of rape, stem of oat, rice straw and rice husk was $1,400\;kg{\cdot}m^{-3}$ ($1.4\;g{\cdot}cm^{-3}$). Ash contents of the pellets were 6.6, 7, 6.2, 5.5, 33% respectively. Rice husk pellet produced the largest ash content compared to other kinds of pellets.

Development of Multidimensional Gap Conductance Model for Thermo-Mechanical Simulation of Light Water Reactor Fuel (경수로 핵연료 열-구조 연계 해석을 위한 다차원 간극 열전도도 모델 개발)

  • Kim, Hyo Chan;Yang, Yong Sik;Koo, Yang Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.157-166
    • /
    • 2014
  • A light water reactor (LWR) fuel rod consists of zirconium alloy cladding tube and uranium dioxide pellets with a slight gap between them. The modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel behavior under irradiated conditions. Many researchers have been developing fuel performance codes based on finite element method (FE) to calculate temperature, stress and strain for multidimensional analysis. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap element (VLG) has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model has been evaluated for variable cases.

A Study on Reduction Treatment of EAF′s Dusts Mixed with Millscale (電氣爐製鋼粉塵과 millscale 混合펠릿의 還元擧動에 관한 硏究)

  • 윤기병
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.45-52
    • /
    • 2000
  • Generally, the residues of EAF's dusts treated by reduction process at high temperature are disposed. If the residues can be recycled as iron sources of EAF by upgrading their iron contents, it can be expected to reduce the amounts of disposed wastes and the environmental impacts. Reduction of EAF's dusts mixed with millscale was carried out in rotary hearth furnace to upgrade iron contents of reduction residues. Dusts should be reduced rapidly to protect from reoxidation of reduced iron residue which can be reoxidized at high temperature. In our experimental conditions, optimum reduction time was about 40min. and iron contents of the residues were increased with increasing mixing ratio of millscale and upgrade to 85% at 50%wt mixing ratio. Zinc and lead contents in residues were about 3% and 0.5% respectively. The residues reduced rapidly must be recycled in EAF because heavy metal elements in the residues can be extracted easily and contaminate air and water.

  • PDF

Emission Characteristics of Air Pollutants and Black Carbon from Wood-pellet Stove and Boiler (목재 펠릿 난로와 보일러 사용에 의한 대기오염물질과 블랙카본의 배출 특성)

  • Park, Sung Kyu;Lyu, Kun Jung;Kim, Daekeun;Kim, Dong Young;Jang, Young Kee;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2015
  • This study was carried out simulating domestic utilization conditions of a wood pellet stove and a wood pellet boiler in order to determine emission factors (EFs) of macro-pollutants, i.e., carbon monoxide, nitrogen oxides, sulfur oxides, ammonia, particulate matters (total suspended particulate, $PM_{10}$, $PM_{2.5}$, black carbon) and trace pollutants (i.e., ten different volatile organic compounds). The composite pollutants EFs for the pellet stove were: for TSP 4.58 g/kg, for $PM_{10}$ 3.35 g/kg, for $PM_{2.5}$ 2.48 g/kg, CO 119.23 g/kg, NO 14.40 g/kg, $SO_2$ 0.17 g/kg, TVOC 37.73 g/kg, $NH_3$ 0.02 g/kg and emissions were similar to the pellet boiler appliance: for TSP 4.73 g/kg, for $PM_{10}$ 3.41 g/kg, for $PM_{2.5}$ 2.63 g/kg, CO 161.51 g/kg, NO 13.67 g/kg, $SO_2$ 0.19 g/kg, TVOC 45.22 g/kg, $NH_3$ 0.02 g/kg.

Studies on the Development of Biodegradable Plastics and Their Safety and Degradability (생붕괴성 플라스틱 포장재의 제조 및 제조된 소재의 안전성과 분해성 연구)

  • You, Young-Sun;Han, Jung-gu;Lee, Han-na;Park, Su-il;Min, Sea-Cheol
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.257-261
    • /
    • 2011
  • Biodegradable plastics were developed using biodegradable pellets made of corn stalk and rice husk and their safety as food packages and their biodegradability against light (ultraviolet (UV)), heat, and fungi were evaluated. Four kinds of 50-${\mu}m$ biodegradable plastics were produced by extruding the mixtures of the biodegradable pellets, low-density polyethylene (LDPE), high-density polyethylene (HDPE), and linear low-density polyethylene (LLDPE) with different compositions. Developed biodegradable plastics were safe to be used as food packages. The initial tensile strength and percentage elongation of the plastics were similar to those of LDPE, but the values decreased with increased their exposure time to UV and heat. The fungal biodegradability of the biodegradable plastics was higher than that of LDPE. The biodegradability of the biodegradable plastics shows the potential for them to be used as sustainable food packages.