• Title/Summary/Keyword: 펠릿

Search Result 216, Processing Time 0.02 seconds

Effects of Various Factors on the Durability of Pellets Fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust (낙엽송 및 백합나무 톱밥으로 제조한 펠릿의 내구성에 미치는 영향인자)

  • Lee, Soo-Min;Choi, Don-Ha;Cho, Seong-Taek;Nam, Tae-Hyun;Han, Gyu-Seong;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.258-268
    • /
    • 2011
  • This study was conducted to investigate the effects of sawdust size and moisture content, pelletizing temperature and time on the durability of the pellets fabricated with larch and tulip tree sawdust. The durability of larch-pellet was significantly higher than that of tulip tree-pellet. For the larch-pellets, the durability of the pellets fabricated with > 18 mesh sawdust was higher than that of 8~18 mesh sawdust. With the increases of pelletizing temperature and time, the durabilities of larch- and tulip tree-pellets steadily improved. The durabilities of larch- and tulip tree-pellets also increased as the moisture content of sawdust increased. In the comparison of durabilities between commercial pellets and larch- or tulip tree-pellets, the pellets fabricated with larch and tulip tree sawdusts in our study were less denser than commercial pellets, but the durability of most larch-pellets was satisfied with the 1st-grade pellet standard designated by Korea Forest Research Institute. In addition, the durability of tulip tree-pellets were higher than that of the 3rd-grade pellet standard. From the scanning electron microscopic observation of larchand tulip tree-pellets, the gap between the sawdusts of each pellet was reduced with the increases of pelletizing temperature and time. In particular, it was visually confirmed that the surface of the pellets made with the pelletizing temperature of $180^{\circ}C$ for 3 min did not differ from that of commercial pellets.

사용후핵연료봉의 헐과 펠릿을 분류 수납하는 용기

  • Jeong, Jae-Hu;Park, Byeong-Seok;Kim, Yeong-Hwan;Hong, Dong-Hui;Kim, Seong-Hyeon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2007.05a
    • /
    • pp.181-182
    • /
    • 2007
  • 본 연구에서는 사용후핵연료봉으로부터 헐(Hull)과 펠릿(Pellet)을 분류하여 수납하는 용기에 관한 것이다. 수납용기는 분리된 헐과 펠릿을 함께 수납하되, 펠릿을 통과시키는 펠릿 통과부가 형성된 헐 수납용기와, 헐 수납용기 하부에 위치한 펠릿을 수납하는 수납용기를 구비하고, 펠릿 통과부를 선택적으로 개폐할 수 있는 헐 차단유닛 등이 있다. 따라서 유해지역인 핫셀(Hot-cell) 내에서 펠릿 조각이나 헐이 분산되는 위험을 피할 수 있어 안전성이 확보되고, 각각의 수납용기에 자동으로 분류 및 수납되는 공정을 도입하여 일괄적으로 작업을 진행시킬 수 있으며, 별도의 공정이 필요치 않아 작업시간을 절약할 수 있다.

  • PDF

Research of Effective Method for Pellet Using Jubak (주박을 활용한 펠릿화의 효율적인 방법 연구)

  • Kim, Dae-Nyeon;Lee, Jung-Bok;Kim, Deok-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.247-247
    • /
    • 2010
  • 본 연구는 주류 제조과정에서 발생하는 생전분발효 부산물을 펠릿(pellet)연료로 전환하는 과정에서 효율적인 방법에 대해 기술한다. 술을 정제하는 과정에서 발생하는 주박을 펠릿화하고 재생청정에너지인 폐자원의 효율성을 높이기 위한 방법을 제안한다. 술을 정제하고 남은 지게미를 주박(酒粕, 술지게미)이라 하고 흔히 부드러운 것을 단단하게 뭉친 알갱이를 펠릿이라 한다. 현재 펠릿화는 폐목재를 분쇄후 성형, 가공하여 목재펠릿을 만들어 상용화하고 있다. 목재펠릿은 성형, 가공하는데 비용이 주박보다 많이 들고 열량도 더 낮음을 확인하였다. 목재소에서 나온 나무(톱밥)와 주박을 열량측정기를 이용하여 측정한 결과로 나무는 약 1850 Kcal이고 주박은 약 1989 Kcal가 측정되었다. 나무는 일반 목재소 세 곳에서 채취한 것이고 주박은 막걸리, 약주 및 청주의 술지게미를 실험에 사용한다. 주류업체에서도 술을 정제하고 남은 주박을 처리하는데 많은 곤란과 비용이 든다. 또한 주박을 해양에 투척하여 처리해 왔으나 2012년부터 해양투기가 금지되어 더욱 처리에 곤란을 겪게 된다. 최근 주박을 토양개량제(비료)로 개발하여 사용하기도 하나 본 연구에서 제안하는 장점은 농산물을 재배해서 주류제조시 발생되는 주박을 펠릿화하여 연료로 사용하고 남은 재를 토양개량제로 사용하는 장점이 있다. 제품의 전체 라이프 사이클을 통해 환경으로 방출되는 모든 것을 가능한 한 0(zero)으로 하는 활동인 제로-이미션(zero-emision)이 된다. 이는 단순히 배출량만을 줄이는 것이 아니라 폐기물을 유용한 자원으로 활용한다는 측면이 가장 큰 이점이 된다. 주박의 효율성을 높이기 위해 주박을 종류별로 주박과 목재를 섞는 방법으로 열량을 측정하였다. 먼저 열량이 높은 순서로 막걸리 주박과 약주 주박의 비율을 1:1, 1:0.5, 1:0.2, 두 번째 막걸리 주박과 청주 주박의 비율을 1:1, 1:0.5, 1:0.2, 세 번째 막걸리 주박과 나무 톱밥의 비율을 1:1, 1:0.5, 1:0.2로 섞어서 열량을 측정하였다. 열량이 높은 순서는 세 번째(2015Kcal), 두 번째(1995Kcal), 첫 번째(1868Kcal)의 순이었다. 가장 열량이 높은 막걸리 주박과 나무 톱밥을 섞은 것이 가장 효율성이 높다. 주박 펠릿의 장점은 친환경적인 소재이고 지속적으로 재생이 가능한 에너지원이다. 더욱이 주박 펠릿은 발열량이 높고 다른 바이오매스 원료에 비해 청정하다는 큰 장점을 지니고 있다. 또한 사용에 소요되는 유지 관리비용을 최소화할 수 있고 자동화가 가능하여 사용에 편리하다. 가격면에서 화석연료에 비해 안정적이고 체적 또한 작아 이송의 큰 장점을 가지고 있다. 현재 펠릿의 경우는 목재펠릿이 제품화되어 있지만 주박을 이용하여 제품의 펠릿화를 통한 연료원으로 사용하는 경우는 전 세계 전무한 상태로 폐자원을 재사용하는 효율성이 제시된다. 향후 과제로 주박을 이용한 펠릿 연료원의 기술이 개발되고 기계적인 시스템을 개발하면 저탄소 녹색성장 신재생에너지 연료의 획기적인 미래형 에너지시스템이 될 것이다.

  • PDF

Preliminary Survey for Setting Evaluation Standards of Wood Pellet Safety (목재펠릿의 안전성평가 기준 마련을 위한 예비 조사)

  • Yang, In;Kang, Sung-Mo;Kim, Young Hun;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.541-552
    • /
    • 2018
  • As the use of wood pellets increases, there is an increasing interest in the safety of the wood pellets themselves to avoid physical and chemical damage to people and the environment. This study investigated the contents of nitrogen, sulfur, chlorine, arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc, and cesium in wood pellets distributed in Korea as a preliminary survey for establishing safety evaluation standards for wood pellets. Nitrogen, sulfur, chlorine, and heavy metal contents of wood pellets produced in Korea met the specification for the 1st grade of wood pellets determined by the National Institute of Forest Science and the specification for the commercial and residential wood pellets of A1 grade determined by the ISO and the evaluation standards for wood pellet safety determined by the Korean Forest Service. However, among imported wood pellets, some wood pellets contained nitrogen, sulfur, chlorine, and heavy metal exceeding the safety evaluation standards. Cesium radioactivity was not detected in domestic wood pellets. Cesium radioactivity was detected from wood pellets imported from Japan, but it was below the limits specified in the wood pellet safety evaluation standards. In conclusion, by establishing safety standards for wood pellets, we believe that safe wood pellets will be used.

Development of a Combustor in Portable Pellet Stoves Using Wood Pellets to Improve Combustion Efficiency and to Reduce Carbon Monoxide (CO) Emission (목재 펠릿(pellet)을 활용하는 휴대용 펠릿 난로의 연소 효율 향상과 일산화탄소(CO) 배출 저감을 위한 연소기 개발)

  • Min, Kyoung-Soon;Lim, Dae-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.315-320
    • /
    • 2020
  • Pellets are manufactured using wood by-products. The combustion efficiency of pellets depends on the pellet manufacturing process, the types of materials mixed while manufacturing and the wood pellet stoves themselves. In this study, we developed a multi-layer combustor to be used in a wood pellet stove, for the purpose of reducing environmental pollution and energy waste due to incomplete combustion. The multi-layer combustor was designed to compensate for the shortcomings of existing combustors. A CAD (Computer Aided Design) model was verified using a 3D printer and a prototype was developed. The combustion experiments were conducted on commercial and proposed combustors using pellets of the same brand, manufacturing date, place and specifications. From the experiments, it was found that the proposed combustor produced the lowest carbon monoxide (CO) emission and highest thermal efficiency.

Characteristics of Pellet Prepared from Sawdust and Wood-tar (목타르와 톱밥을 혼합하여 제조한 펠릿의 특성)

  • Kwon, Gu-Joong;Kwon, Sung-Min;Cha, Du-Song;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.36-42
    • /
    • 2010
  • This study has been carried out to investigate the characteristics of pellets manufactured from sawdust, and a mixture of liquid wood-tar and sawdust. Pellets were prepared at room temperature under 2000 kgf/$cm^2$ using an universal testing machine. The pellets prepared from Q. variabilis wood had slightly higher density than those prepared from P. densiflora wood. The amount of fine particles from Q. variabilis wood pellets was smaller than those from P. densiflora wood. The pellets from P. densiflora wood had higher heating values than those from Q. variabilis wood. The wood pellets manufactured with wood tar showed higher moisture content, density and heating value, but lower fine particles. From the experimental results, it is suggested that wood tar can be used to obtain the higher quality wood pellets.

Microscopic Observation of Pellets Fabricated with Torrefied Larch and Tulip Tree Chips and Effect of Binders on the Durability of the Pellets (반탄화 낙엽송 및 백합나무 칩으로 제조한 펠릿의 현미경 관찰과 펠릿의 내구성에 대한 바인더의 영향)

  • Park, Dae-Hak;Ahn, Byung Jun;Kim, Sang Tae;Lee, Jae-Won;Han, Gyu-Seong;Yang, In
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.224-230
    • /
    • 2015
  • This study was conducted to investigate the effects of several variables on the durability of wood pellets fabricated with torrefied larch (LAR) and tulip tree (TUT) chips. Microscopic observation by scanning electron microscope-energy dispersive X-ray spectrometer was also performed to identify the surface of the wood pellets visually. In addition, torrefied-LAR and TUT pellets were fabricated with the addition of moisture, lignin, starch and protein as binders, and durabilities of the pellets were analyzed statistically. Durabilities of torrefied-LAR and TUT pellets were lower than one of non-torrefied-LAR and TUT pellets. Durabilities of both pellets fabricated with the wood chips, which were torrefied with $230^{\circ}C$ and 30 min, were the highest among all torrefaction conditions used in this study. From the microscopic observations, lignin was distributed broadly on the surface of non-torrefied wood pellets, whereas congregated partially on the surface of torrefied wood pellets. Durability of LAR pellets increased with the addition of moisture, but that of TUT pellets was reduced. Addition of binders contributed to increase the durability of LAR and TUT pellets. As a binder, lignin and protein were more effective than starch for improving the durability. In conclusion, mild torrefaction treatment, such as $230^{\circ}C$ and 30 min, might be an optimal condition to minimize the durability reduction of the LAR and TUT pellets. In addition, when torrefied woody materials with high and low specific gravities are used as a raw material for the production of durable wood pellets, it might be required to adjust moisture content and torrefaction conditions of woody materials, respectively.

The Formation Characteristics of Tar, Ash and Clinker due to Combustion of Wood Pellet and Performance Analysis of Wood Pellet Boiler in terms of the Moisture Contents Change of the Wood Pellet (목재펠릿 연소 시 발생하는 타르, 재, 클링커 생성 특성 분석 및 함수율 변화에 따른 목재펠릿보일러의 성능 연구)

  • Euh, Seung Hee;Oh, Kwang Cheol;Oh, Jae Heun;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.211-220
    • /
    • 2014
  • This study reports the formation characteristics of tar, ash and clinker due to a wood pellet grade and the performance analysis of wood pellet boiler in terms of the moisture contents change of the wood pellet. Tar was accumulated on the heating surface according to combustion of wood pellet, the ash was yielded on the floor of combustion chamber in a wood pellet boiler and the clinker was solidified at the burner due to combustion of the 3rd grade wood pellet. Especially, the moisture contents is important factor to define the grade. Wood of logging residues has a non-uniform moisture contents after the field process, yields of tar, ash and clinker are increased in case of combustion due to the high ash contents. For these reasons, emission of harmful compounds in the exhaust gas, decrease of boiler efficiency and the system operating errors are observed. In the performance analysis of wood pellet boiler in terms of the moisture contents change of the 1st grade wood pellet, the boiler efficiency was reduced by 27.08% with 6.6% moisture contents increase. The optimum moisture contents of wood pellet is needed to improve the boiler performance and efficiency.

Effect of the Addition of Binders on the Fuel Characteristics of Wood Pellets (바인더의 첨가가 목재 펠릿의 연료적 특성에 미치는 영향)

  • Ahn, Byoung Jun;Chang, Hee-Sun;Cho, Seong Taek;Han, Gyu-Seong;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.475-489
    • /
    • 2013
  • This work was conducted to investigate the effect of the addition of binders, such as rapeseed flour, coffee waste, bark, pine cone and lignin powder, on the fuel characteristics of the pellets fabricated with larch and tulip tree sawdust. Moisture content, bulk density and higher heating value of most pellets fabricated with the binders exceeded the 1st-grade pellet standard designated by Korea Forest Research Institute, but ash content of the pellets fabricated with rapeseed flour or bark of 10 wt% on the dry weight basis of sawdust was satisfied with just the 2nd- or 3rd-grade standard. The durability of tulip tree-pellets was positively influenced by the addition of rapeseed flour, coffee waste or lignin powder and increased with increasing the amount of the binders. For larch-pellets, the increase of binders did not greatly affect the durability, and even the durability reduced with the increase of bark or pine cone. From the microscopic observation, the obvious feature of pellet surfaces was not identified by the type of binder but by the addition amount of the binder. In summary, the addition of binders contributed to the fuel characteristics of wood pellets, and particularly the characteristics of wood pellets fabricated with coffee waste improved greatly. Therefore, if the binders are secured sufficiently with a reasonable cost, it might be possible to commercialize wood/binder pellets, which have better fuel characteristics than conventional wood pellets.

Influence of Blast Furnace Slag Addition on the Strength of Cold Bonded Pellet (고로 급냉슬래그를 첨가한 비소성 펠릿의 강도거동)

  • 피용진;반봉찬;김태동
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Utilization of iron bearing dusts has been needed agglomeration prior to use as a burden in blast furnace The cold bonded pellet process using iron bearing dusts has been developed as an alternative to the conventional heat indurated pelletizing process. Partial substitution of cements with cheaper materials would decrease the production cost of pellet. This paper discusses the strength of pellet containing blast furnace slag as a bonding material in pelletizing a cold bonded agglomerates. Depending upon the quality, half of the cement required may be replaced by slag in the pellets with a strength of around 150 kgf. Some of the physicochemical properties of the bonding materials are also investigated in the present work.

  • PDF