• Title/Summary/Keyword: 펜톤반응

Search Result 69, Processing Time 0.035 seconds

유류오염 토양의 화학.생물학적 통합처리 과정 중의 미생물 군집 변화

  • Choi Jeong-Hye;Bae Jae-Sang;Park Yeon-Jeong;Kim Su-Gon;Go Seong-Cheol
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.29-32
    • /
    • 2006
  • 화학적 산화처리와 bioremedation 기법을 개별적 또는 복합적으로 동시에 적용함으로써 한 개별 기법의 단점을 보완하고 현장적용성을 증대시킬 수 있는 통합기법을 개발하고자 하였다. 펜톤유사 반응을 통해 고농도의 유류를 산화분해 시킨 후 미생물 처리를 통해 잔류 유류 오염물질을 제거하고자 하였다. 유류 오염토양의 화학 생물학적 통합처리 공정의 현장 적용성 및 토양 미생물에 미치는 영향을 검증하기 위해 처리과정 전 후의 미생물 군집구조를 분석하였다. 또한 토양 내 유류 분해균을 분리하기 위해 탄소원으로 경유와 벙커C를 이용하여 농화배양을 수행하였다. 경유 분해균 10여종, 벙커 C 분해균 6종을 분리하여 분해능 및 동정을 시도하였다. 또한 유류 분해미생물의 consortia를 분자생물학적 기법으로 분석을 시도하였다.

  • PDF

펜톤유사산화반응을 이용한 4-Chlorophenol 분해과정 예측

  • Lee, Ung;Lee, Seong-Jae;Park, Gyu-Hong;Bae, Beom-Han
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.145-148
    • /
    • 2003
  • The batch experiments showed that 0.515mM 4-chlorophenol and its oxidation intermediates could be totally decomposed within 60 minutes by 1g/L steelers' dust and 0.485mM hydrogen peroxide at pH 2.7. The rate constants in the simplified kinetic model proposed in this study were estimated by fitting to the experimental data obtained in $H_2O$$_2$/steelers' dust system. Using the estimated kinetic rate constants, the simulation of 4-chlorophenol, ferrous iron, hydrogen peroxide, and hydroxyl radical concentration was performed. The predicted concentrations of 4-chlorophenol and hydrogen peroxide corresponded to the actual concentrations.

  • PDF

Decolorization of Rhodamine B by Photo-Fenton Oxidation (광-펜톤 산화반응을 이용한 Rhodamine B의 탈색)

  • Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.274-280
    • /
    • 2007
  • The photochemical decolorization of Rhodamine B (RhB) in water has been carried out by photo-Fenton process. The effect of applied $H_2O_2$, $Fe^{2+}$ dose, solution pH and UV dose have been studied. The influence of constituent processes of photo-Fenton such as UV, $H_2O_2$ and Fenton has been investigated. Comparison of RhB removal was made between the photo-Fenton and $UV/H_2O_2$ process. The results obtained showed that the optimum dosage of $Fe^{2+}$ and $H_2O_2$ were 0.0031 mmol and 0.625 mol, respectively. pH 3 is found to be the optimum pH of for photo-Fenton process. pH and UV dose strongly influenced the decolorization of RhB in photo-Fenton process. The photo-Fenton and $UV/H_2O_2$ processes showed similar decolorization and seem to be appropriate for the decolorization of dye wastewater.

Fenton Degradation of Highly Concentrated Fe(III)-EDTA in the Liquid Waste Produced by Chemical Cleaning of Nuclear Power Plant Steam Generators (펜톤 반응을 이용한 원전 증기발생기 화학세정 폐액의 고농도 Fe(III)-EDTA 분해)

  • Jo, Jin-Oh;Mok, Young Sun;Kim, Seok Tae;Jeong, Woo Tae;Kang, Duk-Won;Rhee, Byong-Ho;Kim, Jin Kil
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.552-556
    • /
    • 2006
  • An advanced oxidation process catalyzed by iron ions in the presence of hydrogen peroxide, the so-called Fenton's reaction, has been applied to the treatment of steam generator chemical cleaning waste containing highly concentrated iron(III)- ethyl-enediaminetetraaceticacid (Fe(III)-EDTA) of 70000 mg/L. The experiments for the degradation of Fe(III)-EDTA were carried out not only with a simulated waste, but also with the real one. The effect of pH and the amount of hydrogen peroxide added to the waste on the degradation was examined, and the results were discussed in several aspects. The optimal pH to maximize the degradation efficiency was dependent on the amount of hydrogen peroxide added to the waste. i.e., when the amount of hydrogen peroxide was different, maximum degradation efficiency was obtained at different pH's. The optimal amount of hydrogen peroxide relative to that of Fe(III)-EDTA was found to be 24.7 mol ($H_{2}O_{2}$)/mol (Fe(III)-EDTA) at pH around 9.

Treatment of Industrial Wastewater including 1,4-Dioxane by Fenton Process and Electrochemical Iron Redox Reaction Process (Fenton공정과 철 이온의 전기적 산화·환원 반응을 이용한 공정에서 1,4-Dioxane을 포함하는 산업폐수 처리에 관한 연구)

  • Lee, Sang Ho;Kim, Pan Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.375-383
    • /
    • 2007
  • Treatment efficiency research was performed using Fenton process and the electrochemical process in the presence of ferrous ion and hydrogen peroxide for the industrial wastewater including 1,4-Dioxane produced during polymerization of polyester. The Fenton process and the electrochemical Iron Redox Reaction (IRR) process were applied for this research to use hydroxyl radical as the powerful oxidant which is continuously produced during the redox reaction with iron ion and hydrogen peroxide. The results of $COD_{Cr}$ and the concentration of 1,4-Dioxane were compared with time interval during the both processes. The rapid removal efficiency was obtained for Fenton process whereas the slow removal efficiency was occurred for the electrochemical IRR process. The removal efficiency of $COD_{Cr}$ for 310 minutes was 84% in the electrochemical IRR process with 1,000 mg/L of iron ion concentration, whereas it was 91% with 2,000 mg/L of iron ion concentration. The lap time to remove all of 1,4-Dioxane, 330 mg/L in the wastewater took 150 minutes with 1,000 mg/L of iron ion concentration, however it took 120 minutes with 2,000 mg/L of iron ion concentration in the electrochemical IRR process.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

A Study about Development of Hydrogen Peroxide Stabilizer in Modified Fenton Reaction Using Anion Surfactant (음이온 계면활성제를 사용한 modified Fenton 반응의 과수안정제 개발에 관한 연구)

  • Kim, Han Ki;Park, Kang Su;Kim, Jeong Hwan;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.377-382
    • /
    • 2011
  • In this study, hydrogen peroxide is stabilized in modified Fenton reaction to improve the soil remediation. Phenanthrene, which is the typical compound in PAHs, was spiked into soil samples to copy the original contaminated site. Anionic surfactant, SDS (Sodium dodecyl sulfate) was used for hydrogen peroxide stabilizer. 4 mM of Fe(II), 5~50 mM of SDS and 102.897 mM of $H_2O_2$ was injected into soil samples which is contaminated by 125 mg/kg of phenanthrene to analyze decomposition rate of phenanthrene in modified Fenton reaction. In condition which SDS was injected 30 mM, decomposition rate of phenanthrene has best efficiency as 95% and in condition which SDS was injected over 30 mM, decomposition rate is lower than SDS 30 mM because SDS enacted as scavenger in the system. Results which assess the change of hydrogen peroxide concentration after injecting hydrogen peroxide stabilizer showed that hydrogen peroxide concentration was 14.6995 mM so that is stabilized at Fe(II) 2 mM condition in 48 hours. On the other hand, hydrogen peroxide is not stable in Fe(III) condition. SDS concentration was fixed and iron concentration was changed 2~8 mM to find out optimize proportion between iron concentration and SDS concentration in modified Fenton reaction. Consequentially, in condition of which Fe(II) 4 mM and SDS 30 mM, reaction has the highest removal rate as 95%.

Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System (흡착광산화 시스템을 이용한 효과적인 SSC 페수처리)

  • Kim, Jong Kyu;Lee, Min Hee;Jung, Yong Wook;Joo, Jin Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF

Chemical Oxidation Treatment of Hydrocarbon-Contaminated Eine Soil by ${H_2}{O_2}$/$Fe^0 System (${H_2}{O_2}$/$Fe^0시스템을 이용한 유류오염 미세토양의 화학적 산화처리)

  • 지원현;김지형;강정우;김성용;장윤영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.13-20
    • /
    • 2001
  • In this Study, application of ${H_2}{O_2}$/$Fe^0 oxidation System (Fenton-like oxidation) for the oxidative treatment of high-level soil contamination with hydrocarbon was suggested. The characteristics of Fenton-like oxidation of diesel-contaminated fine soil was experimentally probed in a batch system varying initial pH, zero valent iron and hydrogen peroxide levels, and initial diesel concentration. Contaminant degradation was identified by total petroleum hydrocarbon(TPH) concentration with gas chromatography. The batch experiments showed that the optimal ${H_2}{O_2}$and $Fe^0 dosage, 10% ${H_2}{O_2}$+ 20% $Fe^0 removed 65% of initial TPH concentration (10,000mg/kg) at a retention time of 24h. And the TPH removal in the ${H_2}{O_2}$/$Fe^0 system effectively proceeded only within a limited pH range of 3-4. The zero valent iron-catalyzed Fenton-like oxidation of diesel-contaminated soil was more competitive to the $FeSO_4-catalyzed system (Fenton oxidation) in removal efficiency and cost especially for the treatment of high level contamination.

  • PDF

Effects of Operating Parameters on Phenol Degradation by Pulsed Corona Discharges in Aqueous Solutions (펄스 코로나 방전에 의한 페놀 분해에 미치는 운전변수의 영향)

  • Chung, Jae-Woo;Moon, Ji-Hoon;Park, Eun-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.79-86
    • /
    • 2010
  • Effects of operating parameters such as applied voltage, solution conductivity, ferrous ion concentration, electrode material on phenol degradation by pulsed corona discharges were investigated in laboratory scale experiments. The increase of applied voltage enhanced the phenol degradation by generating more energetic electrons. The solution conductivity inversely affected phenol removal rate in the tested ranges because the increase of conductivity decreased the electric field strength through the liquid phase. The addition of ferrous sulfate promoted the phenol degradation through the OH radical production by the Fentonlike reactions between ferrous ion and hydrogen peroxide generated by pulsed corona discharges. Catechol and hydroquinone were detected as primary intermediates of phenol degradation and the decrease of pH and the increase of conductivity were observed probably due to the generation of organic acids. Almost all of the initial phenol was disappeared and 29% of total organic corbon (TOC) was removed in the condition of 0.5 mM of ferrous sulfate after approximately 230 kJ of discharge energy transferred to the reactor.