• Title/Summary/Keyword: 페타이어

Search Result 11, Processing Time 0.021 seconds

Effect of Moisture and Freeze-Thaw on Mechanical Properties of CRM Asphalt Mexture (폐타이어 재활용 아스팔트 혼합물의 기계적 성질에 대한 습윤과 동결 융해의 영향)

  • 김낙석;조기주
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • This paper presents the experimental test results on moisture and freeze-thaw resistance of hot mix crumb rubber modified (CRM) asphalt concrete mixture. To compare the differences in mechanical properties of conventional and CRM asphalt concretes, various tests were conducted under different moisture conditions and freeze-thaw cycles. Marshall mix design was also performed to determine the optimum asphalt contents for the both asphalt concrete mixtures. Test results revealed that the moisture and freeze-thaw resistance of CRM asphalt mixture was superior to the conventional asphalt concrete. As a result, it is considered that the utilization of waste tires in asphalt pavements has the potential of minimizing the damage due to the moisture and freeze-thaw.

  • PDF

고무공업에 있어서의 공해방지현황과 동향

  • Korea Tire Manufacturers Association
    • The tire
    • /
    • s.77
    • /
    • pp.37-41
    • /
    • 1978
  • 편집자주: 공해문제가 사회적인 문제로 크게 대두된 것은 이미 1970년경부터이다. 일반적으로 공해라 하면 예컨대, 자동차의 배기가스 공해, 도시페기물공해 등 불특정다수이므로 특정상대를 정할 수 없이 일반적으로 이들을 총괄하여 공해, 즉 Pollution 또는 Environment라고 할 수 있으며, 일괄적인 방지대책이 강구되는 바이다. 따라서 본고는 일본 고무협회지 1978년 2월호에 게재된 일본지포공업대학의 연구논문 중에서 특히 고무공업에 관한 공해문제를 연구하는 데 많은 도움일 될 것으로 생각되는 중요부분을 발췌소개 한 것이다.

  • PDF

An Experimental Study on Burning Time and Ignition Delay of Waste Tire Chips in High Temperature Environments (폐타이어 시편의 연소 특성 및 착화지연에 관한 실험적 연구)

  • 정종수;박은성;박종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1833-1839
    • /
    • 1994
  • Experiments have been carried out to investigate the burning characteristics of waste tires in high temperature environments. The burning of waste tire chips consists of four stages ; evaporation of volatile matters, ignition, burning of volatile matters, and burning of solid carbon. Burning time of waste tire chips depends on the gas temperature and the initial weight of the chip. However, the environments. In the ceramic matrix burner with a ceramic radiation shield, the burning time of the waste tire chips becomes shorter than that without the shield. This is due to the increase in heat transfer to the tire chips by radiation.

Modern Technologies for recycling Waste Tires (폐타이어 활용기술의 현대화)

  • 유택수;장지원;민경화
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.22-36
    • /
    • 1995
  • Waste tires are increased by increasing number of automobiles, which are the symbol of the mordern society. The waste tires create the environmental, visual hazard and landfill space problems. Recycling waste tires is the best way to solve the problems. The landfill space and the natural resources could by reserved by utilizing waste tires. The waste tires were utilized as whole tires, processed tires (crumb rubber) and energy. The plants for manufacturing crumb rubber also were investigated for their equipments and scales.

  • PDF

Pyrolytic Gasification Characteristics of Waste Tires and Waste Synthetic Resins (폐타이어 및 폐합성수지류의 건류가스화 특성)

  • 노남선;김광호;신대현;김동찬
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 2000
  • Characteristics of pyrolytic gasification were examined for the waste tire and 7 types of waste synthetic resin, using a bench scale experimental facility. the product gas temperature of waste tires was $150~300^{\circ}C$ and the temperature profile in the combustion zone of the lower reactor part tended to be clearly distinguished from that in the gasification zone of the upper part. However, in the case of waste synthetic resins, there were no clear distinction and temperature fluctuation was severe, depending on the reaction time. Product gas quantity, which depends on that of supplied (1st) air, was found to be 105~135% of the 1st air amount at the steady state. The concentration of noncombustible components in product gas was 80~90 vol.% and the high heating value of the product gas calculated from gas compositions was 1,500~3,000 kcal/N㎥ for waste tire, and 300~2,900 kcal/N㎥ for waste synthetic resins, respectively. Heating value of product gas and combustible gas concentration were increased in proportion to 1st air amount when 1st air amount is below $0.35N\textrm{m}^3$/min.

  • PDF

Permanent Deformation Properties of Asphalt Binder Modified by Pyrolysis Carbon Black of Waste Tires (열분해 카본블랙을 이용한 아스팔트 바인더의 소성변형 특성)

  • Lee, Dong-Hang;Kim, Jung-Ku;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4028-4032
    • /
    • 2013
  • Recycling method for pyrolyzed carbon black from pyrolysis process of waste tires is needed. Carbon black from pyrolysis of waste tires was used to modify and improve the permanent deformation properties of asphalt binder. 0%, 5%, 10%, 15% and 20% of pyrolyzed carbon black was mixed. Couple of laboratory tests, such as softening point, flash point test, rotational viscometer test and dynamic shear rheometer test, were carried out. The use of pyrolyzed carbon black incresed the softening point, rotational viscosity at 135oC, and resistance of permanent deformation.

Characteristics and Synergistic Effects of Coal/Wasted Tire/Polypropylene Coliquefaction (II) (석탄, 폐타이어, 폴리프로필렌 공동액화 특성 및 상승효과(II))

  • Jeong, Dae-Heui;Jeong, Tae-Jin;Kim, Sang-Jun;Na, Byung-Ki;Song, Hyung-Keun;Yoon, Do-Young;Kim, Dae-Heum;Han, Choon
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.370-378
    • /
    • 2001
  • Characteristics and synergistic effects of the coliquefaction of Alaskan subbituminous coal, wasted tire, and polypropylene were investigated in a tubing-bomb reactor at 41$0^{\circ}C$, and the coliquefaction reactions were performed at 37$0^{\circ}C$~45$0^{\circ}C$ to evaluate the coliquefaction mechanism. The coliquefaction kinetic model based on the free-radical theory was proposed and simulated by the non-linear parameter estimation method. Simulated results represented experimental ones successfully with the correlation coefficient of 0.99. When a catalyst was not used, the conversions were decreased as tetralin increase due to the decrease of liquefaction of polypropylene. When naphthenate catalysts of Mo, Co, and Fe were used, the coliquefaction conversions were increased with the increase of the liquefaction of polypropylene. When Co-naphthenate catalyst was used, the increase of the coliquefaction conversion were as high as 21~23%.

  • PDF

Evaluation of Pyrolysis Carbon Black Modified Asphalt Binder for Fatigue and Low Temperature Crack (열분해 카본블랙을 이용한 아스팔트 바인더의 피로 및 저온 성능 평가)

  • Lee, Dong-Hang;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2511-2515
    • /
    • 2013
  • Carbon black from pyrolysis of waste tires was used to modify and improve the fatigue properties and low temperature cracking of asphalt binder. 0%, 5%, 10%, 15% and 20% of pyrolyzed carbon black was mixed. Couple of laboratory tests, such as dynamic shear rheometer test and bending beam rheometer test, were carried out. The use of pyrolyzed carbon black decreased the fatigue at room temperature and improved the resistance of low temperature cracking up to $-12^{\circ}C$, but, was off the criteria at $-18^{\circ}C$.

Analysis of Strength Characteristics for Lightweight Soils Using Recycled Material (폐기물을 첨가한 경량혼합토의 강도특성 분석)

  • Bae, Yoon-Shin
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.204-212
    • /
    • 2012
  • Lightweight soils are very economical and environment friendly materials that are valuable in field without wasting construction materials, dredged soils and clay/ silty soils during construction. Recently, the research of lightweight soils mixed with recycled material (recycled tire powder, rice husks) have been investigated. In this study the mix design factors (i.e., weight of soil, water content, foaming agent and added water) were analyzed and optimized mix design was suggested using cement content for revealing strength. For the analysis the stress-strain behavior, strength with respect to time, and experimental strength for the component of recycled material were analyzed. Finally, target strength was determined to calculate reasonable and economical mix ratio and the optimized cement content was suggested.