• Title/Summary/Keyword: 페리다이나믹 이론

Search Result 3, Processing Time 0.017 seconds

Peridynamic Modeling for Crack Propagation Analysis of Materials (페리다이나믹 이론 모델을 이용한 재료의 균열 진전 해석)

  • Chung, Won-Jun;Oterkus, Erkan;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • In this paper, the computer simulations are carried out by using the peridynamic theory model with various conditions including quasi-static loads, dynamic loads and crack propagation, branching crack pattern and isotropic materials, orthotropic materials. Three examples, a plate with a hole under quasi-static loading, a plate with a pre-existing crack under dynamic loading and a lamina with a pre-existing crack under quasi-static loading are analyzed by computational simulations. In order to simulate the quasi-static load, an adaptive dynamic relaxation technique is used. In the orthotropic material analysis, a homogenization method is used considering the strain energy density ratio between the classical continuum mechanics and the peridynamic. As a result, crack propagation and branching cracks are observed successfully and the direction and initiation of the crack are also captured within the peridynamic modeling. In case of applying peridynamic used homogenization method to a relatively complicated orthotropic material, it is also verified by comparing with experimental results.

Force-based Coupling of Peridynamics and Classical Elasticity Models (페리다이나믹과 탄성체 모델의 연성기법 개발)

  • Ha, Youn Doh;Byun, Taeuk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In solid mechanics, the peridynamics theory has provided a suitable framework for material failure and damage propagation simulation. Peridynamics is computationally expensive since it is required to solve enormous nonlocal interactions based upon integro-differential equations. Thus, multiscale coupling methods with other local models are of interest for efficient and accurate implementations of peridynamics. In this study, peridynamic models are restricted to regions where discontinuities or stress concentrations are present. In the domains characterized by smooth displacements, classical local models can be employed. We introduce a recently developed blending scheme to concurrently couple bond-based peridynamic models and the Navier equation of classical elasticity. We demonstrate numerically that the proposed blended model is suitable for point loads and static fracture, suggesting an alternative framework for cases where peridynamic models are too expensive, while classical local models are not accurate enough.

Structural Design Optimization of Dynamic Crack Propagation Problems Using Peridynamics (페리다이나믹스를 이용한 균열진전 문제의 구조 최적설계)

  • Kim, Jae-Hyun;Park, Soomin;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Based on a bond-based peridynamics theory for dynamic crack propagation problems, this paper presents a design sensitivity analysis and optimization method. Peridynamics has a peculiar advantage over the existing continuum theory in the mathematical modelling of problems where discontinuities arise. For the design optimization of the crack propagation problems, a non-shape design sensitivity is derived using the adjoint variable method. The obtained adjoint sensitivity of displacement and strain energy turns out to be very accurate and efficient compared to the finite different sensitivity. The obtained design sensitivities are futher utilized to optimally control the position of bifurcation point in the design optimization of crack propagation in a plate under tension. A numerical experiment demonstrates that the optimal distribution of material density could delay the position of bifurcation.