• Title/Summary/Keyword: 페놀프탈레인

Search Result 17, Processing Time 0.022 seconds

An Analysis and Improvement of the Experiment of the Acid-Base Neutralization Reaction (산-염기 중화반응 실험의 문제점 분석 및 개선 방안)

  • Jeon, Yeong-Hwa;Hong, Lan-Sun;Kang, Young-Jin;Kang, Seong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.189-194
    • /
    • 2004
  • The aim of this study is to analyze and improve the experiment of the acid-base neutralization reaction described in science textbooks. The problems in the neutralization reaction of NaOH-HCl solution were following; 1) the decoloration of phenolphthalein solution, 2) the color change of the titrated solution during condensation for the confirmation of the salt crystals, 3) the difficulty for the confirmation of the salt crystals. These problems are explained by the structure change of phenolphthalein and the improved experiment is proposed.

Phenolphthalein Solution Discoloration determined by alkali concentration in long-term concrete check surface (장기재령 콘크리트의 할렬면에서 알칼리농도에 의한 페놀프탈레인 용액의 변색)

  • Park, Hyun;Lee, Jong-Rok;Kim, Kwang-Ki;Kim, Woo-Jae;Kim, Jong-Sub;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.183-186
    • /
    • 2008
  • Carbonation is measured as Phenolphthalein Solution, it is possible to confirm the scope of alkali through acid and basic reaction. Then, Concrete Basic Reaction is decided according to alkali concentration depending on Potassium Hydroxide Now that Carbonation is gradually produced toward inner side from outer side, with time going by, it doesnt work, to some adequate depth, in as fast time as compulsory facilitating test. Thus, this research thesis made a comparative analysis on concrete phenomenal discoloration borderline following Phenolphthalein Solution, as part of a bid to measure Carbonation. Also, the thesis measured Concrete Alkali Concentration. The result showed that concrete coloring is classified into red and scarlet according to alkali concentration, and into borderline breakpoint of the speckle of scarlet and carbonation reaction. The higher chroma becomes with concrete decolorizing, the higher alkali concentration becomes.

  • PDF

Geotechnical Characteristics of DCM-Improved Specimen Under Artesian Pressure (피압 작용에 따른 DCM 개량체의 지반공학적 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • This study investigated the effect of artesian pressure on mechanical properties of deep cement mixing (DCM)-improved specimens. Various laboratory tests such as unconfined compression test and scanning electron microscope (SEM) were conducted on DCM specimens which curied in a water tank with different artesian pressures. The artesian pressure was determined in consideration of the laboratory scale and the hydraulic gradient in field conditions. Results of experimental tests indicated that unconfined compressive strength, secant modulus, and unit weight of specimen decreased and water content tended to increase as an artesian pressure increased. The stress-strain behavior changed brittle to ductile behaviors as an artesian pressure increased. The outflow water from the water tank reacted with the phenolphthalein solution due to the leaching phenomenon of the improved specimen. SEM analysis also confirmed that a small amount of ettringite was formed between soil particles in the specimens with artesian pressure.

Utilization of Immersion-Drying Method for Measuring Damage Depth of Fire-Damaged High-Strength Concrete (화재로 손상된 고강도 콘크리트의 손상 깊이 측정을 위한 수중침지 건조방법의 활용)

  • Kim, Jong;Lim Gun-Su;Beak, Seung-Bok;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.297-308
    • /
    • 2024
  • This study presents a novel approach for evaluating fire-induced damage depth in concrete. The methodology leverages the principle that exposure to high temperatures causes internal expansion within concrete, leading to increased voids and microcracks in the damaged zones. This heightened porosity results in greater absorption rates compared to undamaged areas. By immersing fire-damaged concrete samples in water and subsequently monitoring the drying process, the depth of damage can be assessed. Differences in drying rates and color variations between damaged and undamaged areas serve as visual indicators for determining the extent of the damage. Experimental results from this water immersion method revealed damage depths of 38.7mm and 37.5mm for two different concrete mixtures. These measurements notably surpass the damage depths estimated using traditional phenolphthalein-based methods. This discrepancy suggests that utilizing the absorption rate principle, which is directly linked to the physical changes caused by thermal expansion, offers a more accurate and sensitive assessment of fire damage depth compared to methods relying solely on the presence of Portlandite for colorimetric indication.

Microscopic Influence of Temperature on Carbonation for Marine Concrete Structure (항만콘크리트 구조물의 탄산화에 미치는 온도의 미세구조적 영향)

  • Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.272-278
    • /
    • 2010
  • Some recent researches reported that high temperature rising decreases the carbonation depth of concrete, which is contrary to the previous research results. Carbonation has been known as a reaction between calcium hydroxide and carbon dioxide. But a few researches showed that the other cement hydrates as well as calcium hydroxide react with carbon dioxide. This paper investigates the influence of temperature on carbonation and the variation of $Ca(OH)_2$ and $CaCO_3$ by carbonation. In order to estimate the carbonation depth and the quantities of reactant and product of carbonation reaction, phenolphthalein testing and thermagravimetric analyzer test were conducted. The measurement of carbonation depth with temperature showed that the temperature increase from $20^{\circ}C$ to $30^{\circ}C$C in carbonation environment makes the carbonation depth larger, but the increase from $30^{\circ}C$ to $40^{\circ}C$ has a small influence on the carbonation depth. Comparing calcium hydroxide and calcium carbonate with temperature, the quantity of $CaCO_3$ of specimen carbonated at $30^{\circ}C$ is greater than that of specimen carbonated at $40^{\circ}C$ and the quantity of $Ca(OH)_2$ of specimen carbonated at $30^{\circ}C$ is similar to that of specimen carbonated at $40^{\circ}C$. This observation shows that there is the optimum temperature increasing carbonation depth and the optimum temperature is close to $30^{\circ}C$.

색소 재료(III)

  • 이영희;김경환
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.92-100
    • /
    • 1993
  • 1.8 기능성 색소 1.8.1 pH 지시약 수용액 중의 수소 이온 농도 [H$\^$+/]([]는 농도를 의미한다)를 간단하게 조사하기 위해 pH지시약을 이용하고 있다. 지시약은 일반적으로 유기약산이라든지 약염기로 용액의 pH에 의존하여 수소 이온(프로톤)이나 수산화물 이온이 부가된다든지 탈리 한다든지하여 색이 변화한다. [H$\^$+/]의 값은 작기 때문에 pH = -log[H$\^$+/]의 값으로 표시하며, pH 지시약에 담근 시험지나 pH meter로 측정한다. 예를 들면 페놀프탈레인은 무색의 약산으로 [HIn]으로 표시된다. 그 수용액은 조금만 전리하며, 그 공역 염기 [In$\^$-/]은 적색을 띈다.

  • PDF

Properties of carbonated green construction materials by changes in processing conditions (공정조건 변화에 따른 탄산화 녹색건자재의 물성)

  • Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.152-160
    • /
    • 2013
  • The purpose of this study is to enhance the mechanical strength of specimens containing fly ash from fluidized bed type boiler, which the recycling rate will be eventually increased. Specimens containing fly ash in a certain portion were made and aged for 3, 14, and 28 days. Specimens were carbonated under the supercritical condition at $40^{\circ}C$. The carbonation process under the supercritical condition was performed to enhance the mechanical property of specimens by filling the voids and cracks existing inside cement specimen with $CaCO_3$ reactants. The additional aging effect after the supercritical carbonation process on mechanical strength of specimens was also investigated by comparing the compressive strength with and without 7 day extra aging. Under the supercritical condition and additional 7 day aging specimens were very effective for enhancement of mechanical strength and compressive strength increased by 44 %.

Property enhancement of lightweight aggregate by carbonation processing (인공경량골재의 탄산화 반응에 따른 물성향상에 관한 연구)

  • Park, Junyoung;Kim, Yootaek;Choi, Yunjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.254-259
    • /
    • 2012
  • The mechanical property enhancement was studied using fly ash produced from fluidized bed type boiler in power plant, which contains a lot of Ca component being used to carbonate for $CO_2$ fixation in the lightweight aggregates made of cement and some portion of fly ash as a cement substitution under the supercritical condition. Specimens having various fly ash substitution rates and curing periods were carbonated under the supercritical condition at $40^{\circ}C$. The weight change rate, carbonation rate by TG/DTA analysis, 1% Phenolphthalein test, specific gravity and mechanical compression strength test were performed to observe the mechanical property enhancement of the cemented materials after carbonation under the supercritical condition and to make sure those could be classified as lightweight aggregates having specific gravity under 2.0.

Acrylic Polymer Composition Suitable for Ion Delivery and Selective Detection of Proton, and Hydroxyl and Cu(II) Ions (이온 이동에 적합한 아크릴고분자 박막의 조성과 수소이온, 수산화이온, 구리이온의 선택적 검출)

  • Lee, Dahye;Woo, Heejung;Do, Jung Yun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.801-808
    • /
    • 2014
  • Ion diffusion and chemical binding to acrylic polymer were investigated in a solid film. The composition of acrylic monomers containing amino group and carboxylic acid was adjusted for rapid ion migration in the film. p-Methylred (PMR) and phenolphthalein derivatives were optically sensitive to the concentration of proton and hydroxyl anion, respectively and verified the ion migration through the film layers. A rapid proton migration was observed in the film of a high amino content. On the other hand, $OH^-$ migration occurred rapidly in a high content of carboxylic acid group. The proton migration occurred through the internal layer as well as surface layer of a film and was reversible during 50 repetition examination. Copper(II) ion migration was examined with a Rhodamine-containing polymer film. The light absorption and emission spectra of a Rhodamine-Cu complex showed the key contribution of carboxylic acid group to the Cu(II) migration in a film.

A Study on the Application and Grouting Effects of Akali-Silicasol Grout Material from Field Test (현장시험을 통한 알칼리성 실리카졸 주입재의 적용성 및 주입효과에 대한 연구)

  • Kim, Younghun;Lee, Jinkyu;Yang, Hyungchil;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.5-13
    • /
    • 2012
  • This research have investigated the application and the injection effect of the alkaline silicasol grouting materia (which is) recently developed. To compare the engineering characteristics of the alkaline silicasol which is formed with 3D-gel and the sodium silicate, it have studied the strength and environmental effects through the laboratory test, and field application was investigated with a review of the injection effect and waterproof through the field test. As a result of the laboratory test, unconfined compression strength of alkaline silicasol was 5 times more than sodium silicate. As a result of the leaching test, a total amount of the eluviated elements was very small, it considered the environment-friendly material. As a result of the field test, considerable reduction of the coefficient of permeability at the hydraulic layer was confirmed, and it could secure that the coefficient of permeability showed a lower than standard value of $10^{-5}cm/sec$.