• Title/Summary/Keyword: 페놀계 화합물

Search Result 80, Processing Time 0.024 seconds

Antibacterial Activities of Et-OH Extract from Extruded White Ginseng on Tooth Decay Bacteria (압출성형 백삼 Et-OH 추출물의 충치유발균에 대한 항균활성)

  • Son, Hyun-Jung;Han, Min-Soo;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.951-957
    • /
    • 2009
  • In this study, antibacterial activity of extruded ginseng extract by 60 and 80% Et-OH were investigated by agar diffusion assay against two bacteria causing dental caries (Streptococcus mutans and Lactobacillus casei). Extrusion conditions were 20% moisture content $100^{\circ}C$ and $140^{\circ}C$ barrel temperature. The inhibition effect of 60% Et-OH ginseng extract was higher than 80% Et-OH ginseng extract. The minimum inhibitory concentration (MIC) of 80% Et-OH extruded ginseng extract at 140 and $100^{\circ}C$ barrel temperature against L.casei were 100 and 150 mg/mL respectively using broth assay method. The amount of glucosyltransferase (GTase) inhibitory content was the highest in extruded ginseng at $140^{\circ}C$ barrel temperature with 60% Et-OH. Moreover, n-hexane and n-butanol fraction ginseng extract had potential against tested bacteria. Our results demonstrated that antibacterial activities of extruded ginseng extract at $140^{\circ}C$ barrel temperature were more effective than Ex-$100^{\circ}C$, RG and WG.

Environmental Friendly Out-Coupling Film to Enhance the Efficiency of Organic Light Emitting Diode with UV protection (자외선 차단이 가능한 유기발광다이오드의 효율 향상을 위한 친환경 아웃 커플링 필름)

  • Hyunjun Jang;Baeksang Sung;Sora Han;Jooho Lee;Yong Hyun Kim;Jae-Hyun Lee;Jonghee Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2024
  • Organic light emitting diode(OLED) is distributed in layers with different refractive index, which leads to total internal reflection and low light extraction efficiency. As a result, light extraction technologies have been investigated that include structures such as MLA. However, technologies such as MLA are using petroleum-based polymers, which cause environmental problems during disposal. Therefore, this study investigates the use of eco-friendly polymers hydroxyethyl cellulose(HEC) and tannic acid(TA) to produce external light extraction films. HEC is biodegradable and has high transparency, making it suitable for eco-friend external light extraction films. The TA used as an additive is a polyphenolic molecule, which is expected to form strong hydrogen bonds with HEC. In addition, TA can protect OLED from damage by UV light through its phenolic groups. HECTA MLA films were produced by dissolving HEC and TA in water without using additional solvents and then imprinting them on MLA mould. When the HECTA MLA film was attached to the outside of the OLED and analysed, it showed a high Haze of more than 80%, and the external quantum efficiency and current efficiency of the OLED were improved by 38% and 39%, respectively, compared to the reference.

Antioxidative Activities of Temperature-stepwise Water Extracts from Inonotus obliquus (차가버섯의 온도단계별 물추출물의 항산화성 비교)

  • Lee, Sang-Ok;Kim, Min-Jeong;Kim, Dong-Gyun;Choi, Hyun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.139-147
    • /
    • 2005
  • The efficacy of extraction from Inonotus obliquus was examined from the points of antioxidative characteristics and some antioxidative compounds. To enhance the efficient extraction for the effective components from Inonotus obliquus, temperature-stepwise water extraction method was applied. Temperature-stepwise water extracts were prepared for 8 hrs as follows: the first extract at 8$0^{\circ}C$, the second extract from the residue of the first extract at 10$0^{\circ}C$, and the third extract from the residue of the second extract at 12$0^{\circ}C$. Antioxidativeactivities were determined by electron-donating ability of DPPR - free radical, scavenging ability of ABTS$.$$^{+}$radical cation, and by inhibiting ability of linoleic acid autoxidation. In results, the first extract showed the least antioxidant capacity, and the third extract showed the highest antioxidant capacity. The third extract also had the greatest amounts of phenolic compounds and flavonoids. Amounts of phenolic compound from each extract were almost proportional to the radical scavenging activities and linoleic acid autoxidation inhibiting ability (r=0.960∼0.980, regression analysis). Furthermore, the effect of the pooled extract of all three extractions of Inonotus obliquus on the lipid peroxidation reacted with active oxygen species (KO$_2$, $H_2O$$_2$, $.$OH) and metals (Fe$^{2+}$, CU$^{2+}$) was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). The pooled Inonotus obliquus extracts lowered the amounts of TBARS formed by all of the active oxygen species and metals. Especially, these lowering effects were pronounced in the reaction with $.$OH and Fe$^{2+}$. These results suggest that the pooled temperature-stepwise extract from Inonotus obliquus could be potential functional materials to reduce the oxidation of lipids and other compounds induced by free radicals.adicals.

Characterization of Degradation features and Degradative Products of Poplar Wood(Populus alba${\times}$glandulosa) by Flow Type-Supercritical Water Treatment (초임계수에 의한 현사시 목분의 분해특성 및 분해산물 분석)

  • Choi Joon-Weon;Lim Hyun-Jin;Han Kyu Sung;Kang Ha-Young;Choi Don-Ha
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • In this study, the possibility of sugar conversion of poplar wood(Populus $alba{\times}rglandulosa$) and their degradation features of major wood components were characterized using flow type supercritical water treatment system. The finely ground poplar wood meals were treated for 2min. under subcritical condition$(23MPa,\;275^{\circ}C\;and\;325^{\circ}C)$ and supercritical condition $(23MPa,\;375^{\circ}C\;and\;415^{\circ}C)$. respectively. The degradation products of poplar wood meals appeared brownish colors, including undegraded solids. Increasing the temperature of the system, the degradation rate of poplar wood meals was accelerated and reached up to $94\%\;at\;375^{\circ}C$. The total amount of reducing sugars in degradation products determined by DNS method were gradually lowered when the temperature condition became severe. This indicated that the reducing sugars formed were further degraded to kan derivatives by certain side reaction such as pyrolysis under higher temperature. In order to characterize degradation features of lignin, the degradation products were extracted with ethylacetate and the organic phases were subjected to GC-MS analysis. Main lignin degradation products were identified to vanillin, guaiacol, syrinaldehyde, 4-prophenyl syringol and dihydrosinapyl alcohol, which could be formed by the cleavage of ether linkages in lignin polymers by high temperature condition.

  • PDF

Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil (초임계 에탄올과 루테늄 촉매에 의한 초본 리그닌의 오일화 반응)

  • Park, Jeesu;Kim, Jae-Young;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.355-363
    • /
    • 2015
  • Asian lignin was efficiently depolymerized with supercritical ethanol and Ru/C catalyst at various reaction temperature (250, 300, and $350^{\circ}C$). Lignin-oil was subjected to several physicochemical analyses such as GC/MS, GPC, and elemental analysis. With increasing reaction temperature, the yield of lignin-oil decreased from 89.5 wt% to 32.1 wt%. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of lignin-oil obtained from $350^{\circ}C$ (547Da, 1.49) dramatically decreased compare to those of original asian lignin (3698Da, 2.68). This is a clear evidence of lignin depolymerization. GC/MS analysis revealed that the yield of monomeric phenols involving guaiacol, 4-ethyl-phenol, 4-methylguaiacol, syringol, and 4-methysyringol increased with increasing reaction temperature, and these were mostly produced with applying hydrogen gas and Ru/C catalyst (76.1 mg/g of lignin). Meanwhile, the carbon content of lignin-oil increased whereas the oxygen content decreased with increasing reaction temperature, suggesting that hydrodeoxygenation was significantly enhanced at higher temperature.

Antioxidative Activities by Water-Soluble Extracts of Morus alba and Cudrania tricuspidata (뽕나무(Morus alba)와 꾸지뽕나무(Cudrania tricuspidata)의 수용성 추출물에 의한 항산화 활성)

  • Kim, Hyun-Jung;Cha, Jae-Young;Choi, Myung-Lack;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.148-152
    • /
    • 2000
  • The antioxidative activities of water-soluble extracts from leaves and stem bark of Morus alba and Cudrania tricuspidata were compared in vitro experimental models. Antioxidative activities were measured by inhibition activity against lipid peroxidation of mouse liver microsome, and they were showed in the following order; stem bark of C. tricuspidata(53%)>stem bark of M. alba(43%)>leaves of C. tricuspidata(38%)>leaves of M. alba(43%). In antioxidative activities determined by thiocyanate method and TBA method, the water-soluble extract of stem bark of C. tricuspidata showed the highest antioxidative activity. The water-soluble extracts of leaves were slightly stronger than other extracts in DPPH$({\alpha},{\alpha}'-diphenyl-{\beta}-picrylhydrazyl)$ method. The concentrations of total polyphenolic compound from water-soluble extracts of leaves and stem bark of M. alba and C. tricuspidata were 1.32%, 1.28%, 1.34% and 1.30% respectively. In these results, the water-soluble extract of stem bark from Cudrania tricuspidata showed the highest antioxidative activity.

  • PDF

Distribution Characteristics of Environmental Contaminant at Soil in an Industrial Complex Area (공단지역 토양 중 환경오염물질 농도 분포 특성)

  • Jung, Jong-Hyeon;Cho, Sang-Won;Lim, Hyun-Sul
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.200-208
    • /
    • 2012
  • This study was performed to prevent the health damage of environmental contaminants in Industrial Complex Area. And, this study aimed to identify the concentration levels and distribution characteristics of environmental contaminants and Polycyclic Aromatic Hydrocarbons (PAHs) at soil in Industrial Complex Area and control area. The concentration of the soil pollution standard such as the heavy metals in the soil, VOCs, PAHs, and PCB were measured and analyzed using the soil specimens in the Industrial Complex Area and control area. Soil specimens from the Industrial Complex Area (the direct exposure area) and the control area were surveyed. Songdo-dong, Haedo-dong and Jechul-dong, which are in the direct exposure area and near the emission source, showed relatively high concentrations of contaminant materials when compared with Jangki-myeon, which is far off and in the control area. The concentration of zinc was 20.8-58.9% of the level of concern (300 mg/kg) in the 1st region, which is a relatively high concentration. The concentration of fluoride was under the standard in every region, but it was about 74% of the level of concern (400 mg/kg) in the 1st region. It is recommended that controlling fluoride emissions is necessary. Levels of organic phosphate, phenol, and VOCs like benzene, toluene, ethylbenzene and xylene were under the detection limit of the analysis instruments. The concentration of TPH was high in Songdo-dong. The concentration of contaminants in Jechul-dong was high. In addition, it was observed that the level of soil contamination changed depending on the distance from the emission source. The concentration of PAH compounds in the soil was 18.71-1744.59 ng/g, and the concentration of six potential cancer-causing PAH materials was 6.54-695.94 ng/g. The highest concentration was in Songdo-dong. The PAH concentration in the direct exposure area near the complex was relatively high compared to the indirect exposure area.

Antioxidant Activity of Solvent Fraction from Black Garlic (흑마늘 용매 분획물의 항산화 활성)

  • Shin, Jung-Hye;Lee, Hyun-Gi;Kang, Min-Jung;Lee, Soo-Jung;Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.933-940
    • /
    • 2010
  • To confirm antioxidant activity of black garlic, methanol extract of black garlic was fractioned by hexane, chloroform, ethyl acetate, buthanol and water. Antioxidant activities of solvent fractions were assayed in 100, 250, 500 and $1,000\;{\mu}g/mL$ concentrations. The contents of total phenol and flavonoids were significantly higher 5.5~11.6 times in chloroform, ethyl acetate and hexane fraction than other fractions. Antioxidant activities of solvent fractions were increased by higher sample concentrations and their activities were significantly higher in chloroform and ethyl acetate fractions than others. DPPH radical scavenging activity was over 50% in $1,000\;{\mu}g/mL$ concentration, except butanol and water fraction. In the same concentration, reducing power was also significantly lower in butanol and water fraction. ABTS radical scavenging activity was higher in hexane, chloroform and ethyl acetate fractions and was over 70% at $1,000\;{\mu}g/mL$ concentration. In $1,000\;{\mu}g/mL$ concentration, the range of hydroxy radical scavenging activity was 50.27~81.02% and SOD-like ability was 26.73~47.64%. Antioxidant activity in linoleic acid reaction system was significantly higher when storage time was longer and sample concentration was higher in non-polar solvent fractions. Nitrite scavenging activity was relatively higher than antioxidant activity and the activity in $100\;{\mu}g/mL$ concentration was over than 50%, except butanol fraction.

Structural and Chemical Characterization of Aquatic Humic Substances in Conventional Water Treatment Processes (재래식 정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석)

  • Kim, Hyun-Chul;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Humic substances(HS) from raw and process waters at a conventional water treatment plant were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, and spectroscopic characteristics using FT-IR(Fourier transform infrared) and $^1H-NMR$(proton nuclear magnetic resonance) spectroscopy. Humic fraction gradually decreased from 47.2% to 26.4%(from 0.97 to 0.54 mgC/L) through conventional water treatment processes. Concentration of phenolic groups in the HS fraction gradually decreased from 60.5% to 21.8%(from 12.2 to $6.0\;{\mu}M/L$ as phenolic-OH) through water treatment. In the case of carboxylic groups, the concentration increased from 39.5% to 46.9%(from 7.9 to $10.6\;{\mu}M/L$ as COOH) by pre-chlorination, but gradually decreased to 34.2%($9.4\;{\mu}M/L$ as COOH) through sedimentation and sand filtration. From the results of the FT-IR and $^1H-NMR$ spectra of HS, the content of carboxylic groups increased and ratio of aliphatic protons to aromatic protons($P_{Al}/P_{Ar}$) also increased through water treatment, which indicated the increase of aliphatic compounds.

Cell Migratory Induction by Expression of Angiogenin and Vascular Endothelial Growth Factor in Resveratrol Treated HeLa Cells (Resveratrol 처리한 HeLa세포에서 angiogenin과 vascular endothelial growth factor 발현유도에 따른 세포이동촉진)

  • Joe, I-Seul;Jeong, Sin-Gu;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.337-342
    • /
    • 2014
  • Resveratrol (RSV), a natural polyphenolic compound, is a modulator for cell division and cell migration, and has diverse beneficial properties. Angiogenin (ANG) and vascular endothelial growth factor (VEGF) are considered to be important mechanisms for cell proliferation, angiogenesis, the formation of tubular structures, and migration. In this study, we investigated whether RSV has a migratory effect in HeLa cells. When cells were treated with $0{\sim}50{\mu}M$ of RSV for 24 hr, the expression of ANG and VEGF was significantly increased in a dose dependent manner measured by real-time PCR. Similarly, we performed time dependent experiments for $50{\mu}M$ RSV treated cells and identified the optimized time at 24 hr. The increased expression in RSV treated cells was confirmed by Western blot analysis. To examine the toxic effects of RSV at the determined conditions, MTT assays were performed. The viabilities were unchanged for $0{\sim}50{\mu}M$ RSV treated cells, while they decreased at $100{\mu}M$ RSV. To examine the effect of migration in RSV treated cells, we performed a wound-healing assay. The migratory rates were significantly enhanced in the RSV treated group. In this study, we found that RSV induces an increase in the expression of migration factors ANG, VEGF, and enhances cell migration for the determined conditions.