• Title/Summary/Keyword: 펌프제어시스템

Search Result 307, Processing Time 0.027 seconds

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on Control of Inverter Frequency (인버터 주파수 제어에 따른 CO2용 수냉식 열펌프의 성능 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4721-4726
    • /
    • 2010
  • The performance characteristics of water-chilling heat pump using CO2 for the control of inverter frequency was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter flow type heat exchangers with concentric dual tubes, which are made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2.4m length. The experimental results summarize as the following: for constant inlet temperature of evaporator and gas cooler, as mass flow rate, compression ratio and discharge pressure increases with the inverter frequency. And heating capacity and compressor work increases, but coefficient of performance(COP) decreases with the inverter frequency of compressor. As inlet temperature of secondary fluid in the evaporator increases from $15^{\circ}C$ to $25^{\circ}C$, compression ratio and compressor work decreases, but mass flow rate, heating capacity and COP increases with the inverter frequency of compressor. The above tendency is similar with performance variation with respect to the variation of inverter frequency in the conventional vapor compression refrigeration cycle.

A Study on Lubricant additive of DME Common-rail Vehicle (DME 커먼레일 차량의 윤활향상제에 관한 연구)

  • Park, JungKwon;Kim, Hyunchul;Jeong, SooJin;Chon, MunSoo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.15-18
    • /
    • 2013
  • The next generation alternative fuel of diesel, DME (Dimethyl Ether) discharges particulate matter hardly due to chemical structural as oxygen-fuel so it has the eco-friendly property. Despite these advantages, the DME has the technical difficulties to apply to the diesel engine because of a low calorific value, viscosity and compressibility effects. From this point of view, we performed experimental studies on improved reliability of DME common-rail vehicle and lubricity enhancement of DME fuel for empirical distribution of eco-friendly DME fuel. Also we analyzed solubility of lubrication enhancer according to a drop in temperature, try to secure reliability about core parts of DME vehicle by applying lubrication enhancer in the DME common-rail vehicle.

  • PDF

A Development of Digital Control System for FWPT In Nuclear Power Plant (원전 급수펌프 구동용 터빈 제어시스템 개발)

  • Choi, In-Kyu;Jeong, Chang-Ki;Kim, Byoung-Chul;Kim, Jong-An;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1885-1886
    • /
    • 2006
  • The thermal energy from nuclear fission is transferred to the steam generator which is a kind of a large heat exchanger. After the feedwater is injected into the steam generator and absorbs the thermal energy, it is converted into the steam. This steam goes into the turbine. The balance between the generated energy and the consumed energy is required for the nuclear power plant to be stable. For the purpose of which, the feed water, a parameter for energy transfer, should be controlled in stability. Usually, the nuclear power plants are operated in base load in the view of power system for the stability of fission system. Therefore, though there will be almost no unbalance, there can be some instability from unbalance in case of startup/shutdown or disturbance. In this case, the controllability of feedwater pump is very important for the quick recover of stability.

  • PDF

Characteristics of the Sealing Pressure of a Magnetic Fluid Shaft Seal for Intra-Cardiac Axial Flow Blood Pumps (심장 내 이식형 축류 혈액 펌프용 자성 유체 축봉의 내압 특성)

  • KIM, Dong-Wook;Mitamura , Yoshinori
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.477-482
    • /
    • 2002
  • One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments confirmed these advantages. The seal body was composed of a Nd-Fe-B magnet and two pole pieces; the seal was formed by injecting magnetic fluid into the gap (50${\mu}m$) between the pole pieces and the motor shaft. To contain the ferro-fluid in the seal and to minimize the possibility of magnetic fluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 31kPa with magnetic fluid LS-40 (saturated magnetization, 24.3 KA/m) at a motor speed of 10,000 rpm and 53kPa under static conditions(0mmHg). The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intra-cardiac axial flow blood pump.

Development of the Oil Consumption Rate Test Method and Measurement Data Analysis for an Automatic Transmission System (자동변속기 오일 소요유량 시험법개발 및 측정데이터 분석)

  • Jeong, H.S.;Oh, S.H.;Yi, J.S.;Lim, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • Automatic power transmission systems consisted of a torque converter and several planetary gear sets, clutches and brakes are controlled by a hydraulic shift control circuit and an electronic transmission control unit. The hydraulic circuit serves for the operation of the torque converter and lubrication oil supply of the transmission system as well as for the actuation of clutches for the automatic gear shift. The complicated hydraulic control circuit constructed by many spools, solenoids, orifices and flow passages are integrated into one small valve block and it is powered by one hydraulic pump. In this paper, a test equipment was developed to measure the oil consumption of each component at various wide operating conditions. Test data about 730 sets acquired from five test items are analyzed and discussed on the oil capacity of the circuit.

  • PDF

Instrument of building outer wall window cleaning robot and controller layout that use vacuum adsorption technology (진공흡착 기술을 사용한 건물외벽 유리창 청소 로봇의 구현)

  • Lee, Dong-Kwang;Kim, Myung-Jong;Kwon, Soon-Won;Choi, Mun-Sik;Im, Young-Hoon;Kong, Jung-Shik;Jang, Mun-Suk;Kwon, Oh-Sang;Lee, Eung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.259-260
    • /
    • 2007
  • 본 논문은 건물 외면의 유리창 청소로봇에 관한 것으로, 더욱 세부적으로는 청소 시스템을 갖춘 로봇을 사람이 닦기 힘들거나 위험한 고층건물이나 아파트 둥의 실외 유리창에 흡착시켜 청소로봇을 이용하여 실외 유리창을 자동으로 닦을 수 있게 하는 건물 외면의 유리창 청소로봇에 관한 것이다. 진공펌프를 사용하여 유리창에 안정적으로 흡착할 수 있도록 하였고, 블루투스를 이용하여 무선 조종이 가능하도록 하여 사용자가 원거리에서 로봇의 청소를 제어할 수 있도록 하였다.

  • PDF

An Introduction to Speed Control System of Small Steam Turbine for Feed Water Supply in Power Plant (발전소 급수펌프 구동용 소형 터빈 제어시스템 소개)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1603-1604
    • /
    • 2007
  • The load of power plants changes every from time to time according to which steam flow of boiler changes. the feed water control is very important for the power plant to be operated in its stability conditions. In case of circulation type boiler, the instability of feed water control leads to instability of drum level control. The higher level of drum water can induce bad quality steam to go into turbine which means the possibility of damage. The lower level of drum water can induce the tubes of boiler water wall to be overheated. In case of once through type boiler, the instability of feed water control leads to bad cooling of superheaters. The less the feed water flow is, the more heated the superheater is. It is necessary for the turbine driving feed water pump to be controlled for the optimal feed water flow in the large capacity power plant. The speed of turbine is controled for the feed water flow. By the way, the optimal control of steam valve is necessary for the speed control of turbine. Therefore, the various kinds of the steam valve structures are introduced in this paper

  • PDF

Reinforcement learning model for water distribution system design (상수도관망 설계에의 강화학습 적용방안 연구)

  • Jaehyun Kim;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.229-229
    • /
    • 2023
  • 강화학습은 에이전트(agent)가 주어진 환경(environment)과의 상호작용을 통해서 상태(state)를 변화시켜가며 최대의 보상(reward)을 얻을 수 있도록 최적의 행동(action)을 학습하는 기계학습법을 의미한다. 최근 알파고와 같은 게임뿐만 아니라 자율주행 자동차, 로봇 제어 등 다양한 분야에서 널리 사용되고 있다. 상수도관망 분야의 경우에도 펌프 운영, 밸브 운영, 센서 최적 위치 선정 등 여러 문제에 적용되었으나, 설계에 강화학습을 적용한 연구는 없었다. 설계의 경우, 관망의 크기가 커짐에 따라 알고리즘의 탐색 공간의 크기가 증가하여 기존의 최적화 알고리즘을 이용하는 것에는 한계가 존재한다. 따라서 본 연구는 강화학습을 이용하여 상수도관망의 구성요소와 환경요인 간의 복잡한 상호작용을 고려하는 설계 방법론을 제안한다. 모델의 에이전트를 딥 강화학습(Deep Reinforcement Learning)으로 구성하여, 상태 및 행동 공간이 커 발생하는 고차원성 문제를 해결하였다. 또한, 해당 모델의 상태 및 보상으로 절점에서의 압력 및 수요량과 설계비용을 고려하여 적절한 수량과 수압의 용수 공급이 가능한 경제적인 관망을 설계하도록 하였다. 모델의 행동은 실제로 공학자가 설계하듯이 절점마다 하나씩 차례대로 다른 절점과의 연결 여부를 결정하는 것으로, 이를 통해 관망의 레이아웃(layout)과 관경을 결정한다. 본 연구에서 제안한 방법론을 규모가 큰 그리드 네트워크에 적용하여 모델을 검증하였으며, 고려해야 할 변수의 개수가 많음에도 불구하고 목적에 부합하는 관망을 설계할 수 있었다. 모델 학습과정 동안 에피소드의 평균 길이와 보상의 크기 등의 변화를 비교하여, 제안한 모델의 학습 능력을 평가 및 보완하였다. 향후 강화학습 모델을 통해 신뢰성(reliability) 또는 탄력성(resilience)과 같은 시스템의 성능까지 고려한 설계가 가능할 것으로 기대한다.

  • PDF

Management of Test Facility for Tests of Liquid Rocket Engine on Off-Design Condition (액체로켓엔진 탈설계 조건 시험을 위한 시험설비 운용)

  • Yu, Byungil;Kim, Hongjip;Han, Yeongmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.91-99
    • /
    • 2020
  • A liquid rocket engine goes through many tests to prove its performance before liftoff. It means the tests for setting ignition and start-up conditions or a test on design condition, which verifies the design performance. However, the development process requires verification of performance under off-design conditions through tests involving different operating conditions, which affects the duration of engine development. The off-design performance test is performed by altering the conditions of the propellant supplied to the engine in conjunction with the engine performance test that varies the opening of the control valves in the engine. This paper is based on the results of the engine tests performed at the KSLV-II engine test facilities in the Naro Space Center and describes the operations of the test facility for off-design condition test that changes the inlet conditions of the turbo-pump due to changes in the pressure and temperature of the propellant supplied to the test engines.

Development of the HPM System to Improve Efficiency of the Hydraulic Excavator (유압식 굴삭기 효율 향상을 위한 HPM 시스템 개발)

  • Kwon, Yong Cheol;Lee, Kyung Sub;Kim, Sung Hun;Koo, Byoung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • The HPM (High-speed Power Matching) system is an electro-hydraulic control system. It directly controls the swash plate of the pump by selecting four-loop logic based on joystick signals, pump flow, and pressure signal to improve the efficiency and controllability of construction machines. In the NFC (Negative Flow Control) system, a typical pump control system using conventional open center type MCV, the loss is continuously generated by flow through the center bypass line even when the excavator is not in operation. Also, due to the slow response of the pump that indirectly controls the flow rate using the pressure regulator, peak pressure occurs at the start or stop of the operation. Conversely, the HPM system uses an MCV without center-by-pass flow path and the swash plate of a pump for the HPM is controlled by a high-speed proportional flow control valve. As a result, the HPM system minimizes energy loss in standby state of the excavator and enables peak pressure control through rapid electro-hydraulic control of a pump. In this paper, the concept of the HPM system algorithm is introduced and the hydraulic system efficiency is compared with the NFC system using the excavator SAT (System Analysis Tool).