• 제목/요약/키워드: 펌프의 성능

Search Result 1,418, Processing Time 0.029 seconds

A Study of Aerodynamic Design of a Radial Turbine for BOP of MCFC Fuel Cell System (연료전지 BOP용 구심터빈 공력설계에 관한 연구)

  • Choi, Bum-Seog;Ahn, Kook-Young;Park, Moo-Ryong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.531-534
    • /
    • 2006
  • This study is concerned with radial turbine design and performance improvement of a turbo generator system, which is used for maximizing performance of a 250kW MCFC fuel cell system. A preliminary design of a radial turbine has been performed under the thermodynamic and fluid-dynamic conditions determined by a cycle analysis of the MCFC BOP system. Basic demensions are determined by a meanline analysis and calculation of radial variation at the exit of the turbine. The turbine impeller is designed and modified by iterative processes of three dimensional flow analysis.

  • PDF

충돌형 가스발생기 탈설계점 연소시험

  • Kim, Seung-Han;Han, Yeung-Min;Seo, Seong-Hyeon;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-90
    • /
    • 2004
  • This paper describes the results of combustion performance test of fuel-rich gas generator(GG) using LOx and kerosene as propellant at off-design conditions. The chamber pressure is thought to be a function of O/F ratio and total propellant mass flow rate. The test shows that the spatial temperature deviation at the exit of gas generator remains within 7.5K and that the average gas temperature at the exit is a function of propellant O/F ratio. The results of firing test of gas generator at off-design conditions, especially the relation between gas temperature and O/F ratio, can provide useful data for the design of future gas generator and for the development of low-O/F ratio reaction analysis code.

  • PDF

Estimation of Thermal Conductivity of Weathered Granite Soils (화강풍화토의 열전도도 산정에 대한 연구)

  • Park, Hyunku;Park, Hansol;Lee, Seung-Rae;Go, Gyu-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.69-77
    • /
    • 2012
  • In general, geothermal energy pile and horizontal ground heat exchangers are installed in shallower depths than conventional vertical ground coupled heat pumps. Consequently their heat exchange performance is strongly governed by thermal conductivity of soil layer. Previous studies have shown that the thermal conductivity of soil above ground water table significantly affects the heat exchange rate because of partially saturated condition in soil and consequent variation of soil thermal conductivity. This paper presents a study result on the prediction of thermal conductivity of weathered granite soils. For weathered granite soils sampled from 5 locations, thermal conductivity tests were conducted with varying porosity and degree of saturation. The existing thermal conductivity models in literatures appeared inappropriate to the weathered granite soils. Hence, an empirical equation was proposed in this paper and its validity was examined by applying it to thermal conductivity test results obtained for weathered granite soils in this study and from literatures.

An Experimental Study on Evaporation/Condensation Heat Transfer with Flow Direction in Brazed Plate Heat Exchanger using Refrigerant 410A (R410A를 이용한 브레이징 타입 판형열교환기에서 물 측 유동방향에 따른 응축/증발 성능 평가)

  • Lee, Sung-Woo;Jeong, Young-Man;Lee, Jae-Keun;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1096-1101
    • /
    • 2009
  • The plate heat exchanger(PHE) in heat pump has two flow streams of the refrigerant and water. The flow direction of the refrigerant, unlike that of water, can be changed by a 4-way valve depending on operating condition. Therefore the flow arrangement is a parallel flow for heating and a counter flow for cooling, respectively. In this study, the effects of the flow direction of the water on the heat transfer rate are investigated experimentally. The experiments are carried out for brazed plate heat exchangers under a parallel and counter flow conditions in evaporation and condensation. The experimental parameters in this study include the mass flux of the refrigerant 410A from 3 to $14\;kg/m^2s$ and the flow patterns for the pressure of PHE fixed at 0.97 and 2.46 MPa. The results show that both the heat transfer rate and frictional pressure drop across the PHE increase with the mass flux. The heat transfer rate of the refrigerant 410A for evaporation show great sensitivity to flow direction of the water. The heat transfer rate for evaporation with a counter flow are 5-30% higher than that with a parallel flow.

  • PDF

Analysis of Performance of Heat Pump System with Flue Gas Heat Recovery through Field Test (실증운전을 통한 배가스 열회수 히트펌프 시스템의 성능 분석)

  • Lee, Seung-Ho;Lee, Gil-Bong;Lee, Young-Soo;Park, Sang-Il;Ko, Chang-Bok;Baik, Young-Jin;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A field test of a 70 kW heat pump system with flue gas heat recovery was performed by an experiment at the Korea Institute of Energy Research. The flue gas is exhausted from a 320 RT absorption chiller-heater in the heating season. Using this flue gas, source water of the heat pump is heated by a condensed-type heat exchanger in the chimney. The operating characteristics of the heat recovery heat pump system were analyzed. Based on the results of the experiments, operating maps were obtained, and an optimum operating range is suggested, in which the return and heat source water temperature are $51^{\circ}C$ and $31^{\circ}C$, respectively. Additionally, economic analysis of this system was conducted and about 50% energy cost savings can be expected in the heating season.

Room-temperature 2-D PBG laser employing wafer fusion (기판 융용 접합을 이용한 상온동작 2차원 광밴드갭 레이저)

  • 황정기;류한열;송대성;한일영;이용희;장동훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.274-275
    • /
    • 2000
  • 광결정(photonic crystal)으로 광원의 자발 방출을 조절하면 문턱전류 없는 레이저, 고효율 다이오드, 파장 크기에서 손실 없이 급격히 꺾을 수 있는 광도파로 등 기존의 광소자에서 얻을 수 없는 좋은 성능을 얻을 수 있을 것으로 예상된다. 이러한 광결정은 유전체를 파장정도 크기에서 주기적으로 배치시킨 인공적인 결정인데 고체에서 원자의 주기적인 배치로 전자가 전파할 수 없는 진동수 영역, 즉 밴드갭이 생기는 것과 유사하게 빛에 대해서 빛이 전파할 수 없는 진동수 영역인 광밴드갭(photonic bandgap)을 가진다. 그런데 관심있는 광영역에서 3차원 모든 방향으로 광밴드갭이 있는 구조물은 마이크로미터보다 작은 내부 구조를 가지는 복잡한 3차원 구조물로 제작이 어렵다. 이러한 어려움을 극복하기 위해 제작이 비교적 용이한 3차원 광밴드갭 구조물이 찾아지고 있다. 다른 접근 방법으로 평면(x-y)에서는 2차원 광밴드갭을 이용하고 제 3의 방향(z축)으로는 전반사를 이용하는 구조는 제작이 용이할 뿐만 아니라 처음부터 광원의 편광을 TE 또는 TM 모드로만 방출 되도록 준비해 줄 수 있으면 거의 3차원 광결정에서 얻을 수 있는 효과를 낼 수 있는 것으로 발표되었다.$^{(1)}$ 이 방법을 이용하여 최근에 미국의 캘리포니아 공과대학(Caltech)을 중심으로 레이저 동작을 보여 주었다.$^{(2.3)}$ 공기로 둘러싸인 얇은 유전체 평판에서 생기는 전반사와 평판 위에 2차원 삼각형살창(triangular lattice)에 구멍을 뚫어 얻는 2차원 광밴드갭을 이용해 3차원 공진모드를 형성하였다. 이러한 구조에서 1개만 구멍을 매워서 만든 공진기는 저온(143 K)에서 레이저 발진을 보였고 여러 개의 구멍을 매운 경우는 상온에서 펌프 펄스의 유지시간이 0.5% 인 경우 레이저가 동작하는 것을 보여주었다. 이는 구조내에서 열전도가 문제가 된다는 것을 의미하는데 위아래가 공기로 둘러 싸여 있어 발생한 열이 가는 유전체 네트웍을 통해서만 전달 될 수 있기 때문이다. (중략)

  • PDF

Performance Comparison of Supercritical Heat Pump for a Variety of Refrigerants (다양한 냉매를 적용한 초임계 히트펌프의 성능 비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan;Jeon, Min-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-47
    • /
    • 2014
  • In this paper, the cycle performance analysis for the COP of supercritical heat pump using various refrigerants is presented to offer the basic design data for the operating parameters of the system. The working fluids are R134a, R22, R32, R290, R600, R600a, R1270 and R744. The operating parameters considered in this study include superheating degree of evaporator, temperature of gas cooler inlet and outlet, compressor efficiency and evaporating temperature in the supercritical heat pump system. The main results were summarized as follows : Superheating degree, temperature of gas cooler inlet and outlet, compressor efficiency and evaporating temperature of supercritical heat pump system have an effect on the COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. And, in comparison of COP of supercritical heat pump using various refrigerants, R32 and R600 is the highest, and R744 is the lowest among other refrigerants. From these results, it is confirmed that the COP of supercritical heat pump using R744 is higher than that using freon refrigerants such as R32 and R134a.

Performance Analysis of Ejector-Pump Thermal Energy Conversion System Using Various Working Fluids (이젝터-펌프 온도차발전시스템의 작동유체별 성능분석)

  • Yoon, Jung-In;Seol, Sung-Hoon;Son, Chang-Hyo;Choi, Kwang-Hwan;Kim, Young-Bok;Lee, Ho-Saeng;Kim, Hyeon-Ju;Moon, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.87-92
    • /
    • 2016
  • This research dealt with performance characteristics of OTEC system applying an ejector and additional pump. Each system using five kinds of working fluids was analyzed, and primary parameters with respect to entrainment ratio were examined: Turbine gross power, evaporation capacity, pump work, efficiency and volume flow ratio. The primary results were as following. The efficiency of ejector-pump OTEC system was dependent on entrainment of the ejector. The degree of efficiency change was different from applied working fluid, and amount of pump work was turned out to be primary factor affected system efficiency. Meanwhile, optimized entrainment ratio was different from applied working fluid since their different vapor density. System efficiency at optimized entrainmet ratio of each working fluid was around 5%, showing minor difference each other.

Performance and Emission Characteristics of GHP Engine at Different Natural Gas Heating Value (천연가스 열량 변화에 따른 GHP 엔진의 성능 및 배출가스 특성)

  • Lee, Joongseong;You, Hyunseok;Choi, Jeonghwan;Choi, Euikwang;Lee, Kyungho;Lee, Byungdae
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In general, natural gas is used as GHP(Gas Engine Driven Heat Pump) fuel. On this study, the influences of different natural gas heating value on GHP were evaluated. As a result of engine test & field test using low heating value gas($9,800kcal/Nm^3$) as fuel, the engine power was reduced slightly, however the performance of start-up, the stability of operation and the characteristics of emission gas were almost similar. So it is considered that the normal operation of GHP is possible without any tuning when the low heating value($9,800kcal/Nm^3$) of natural gas was used as fuel.

The development of small water-jet propulsion for 150HP grade inboard type (150마력급 선내형 소형 워터제트 추진시스템 개발)

  • Lee, Joong-Seop;Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • This study is on the development of 150PS inboard type of compact water jet propulsion system. The water jet is composed of intake, impeller, diffuser, reverse bucket and main shaft. Components of water jet have been manufactured through precision processing after sand casting. Development of water jet propelled engine has been finally completed by processes which are design, production and inspection on each component. The water jet performance characteristics show that 0.29 m3/s of maximum flow rate and 37 m/s of flow velocity have been secured in the ground test pool. Field test was performed by 21ft test ship that water jet propulsion equipment developed in this study was installed. As a result, the weight of hull, engine and other parts of the ship has been almost 1.2 ton and 45 km/h of maximum sailing speed has been recorded with 3700 rpm of engine in the domestic coast test.