• Title/Summary/Keyword: 펄스-에코법

Search Result 37, Processing Time 0.022 seconds

Study on Thickness Measurement about Insulation Rubber of Steel Motor Case Using Ultrasonic Resonance (초음파 공진을 이용한 스틸 연소관의 내열 고무 두께 측정 기법 연구)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.562-569
    • /
    • 2012
  • The rubber side could be contaminated using the existing pulse echo method because the ultrasonic wave was incident on the rubber side from the interior of the steel motor case, which could lead to the critical disbond defect. To develop the test method which can be replaced the existing method, the ultrasonic wave was incident on steel face of the steel/rubber adhesive test block. Rubber resonance frequencies measured from the steel/rubber adhesive test block were in good agreement with theoretically predicted rubber resonance frequencies. This paper was described about the ultrasonic resonance method to convert the rubber resonance frequency into the rubber thickness.

  • PDF

A Debonding Detection Technique for FRP/Rubber Interface by Ultrasonic Phase Reversal (초음파 위상 반전에 의한 FRP/고무 접착 계면의 미접착 결함 검출 연구)

  • Kim, Dong-Ryun;Lim, Soo-Yong;Chung, Sang-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 2009
  • The object of this study is to develop new examination technique for detecting debond in adhesive interface of different kinds of materials. Ultrasonic signal was modeled by theoretically analyzing ultrasonic propagation phenomenon of the adhesive interface and debonding interface. The test method using the phase reversal of the debonding interface applied to the FRP/Rubber test block. Aluminum/Rubber test block with the flat bottom hole was manufactured to evaluate quantitatively the minimum detection ability of defects. The pulse echo reflection method and the phase reversal method were mutually compared and it was estimated that the phase reversal method could detect the debond on the basis of the theoretically predicted ultrasonic signal and ultrasonic test data.

A Study on Quantitative Flaw Evaluation of Nuclear Power Plant Steam Generator Tube by Ultrasonic Testing (초음파를 이용한 원자력발전소 증기발생기 전열관의 정략적 결함 평가에 관한 연구)

  • Yoon, Byung-Sik;Kim, Yong-Sik;Lee, Hee-Jong;Lee, Yong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2006
  • A steam generator of nuclear power plant has thousands of thin tubes. These tubes play an important role in maintaining the pressure boundary between the primary and secondary side of nuclear power plant. The steam generator tube is easy to be damaged because of the severe operating conditions such as the high temperature and pressure. Therefore, tremendous efforts are made to assess the structural integrity of the steam generator tubes. The eddy current test is the most popular non-destructive test to assess the integrity of the tubes. However, the eddy current test has the limitation to size the flaw accurately because the eddy current signal behavior depends on the total volume of flaw. This paper shows the possibility that the ultrasonic test method can be applied to detect the flaws in the steam generator tubes and to measure them quantitatively. From the test results, it is expected that if the ultrasonic test is put to practical use in the steam generator tube inspection, the inspection results will be improved.

Change in Ultrasonic Characteristics with Isothermal Heat Treatment of 2.25Cr-1Mo Steel (등온열처리에 따른 2.25Cr-1Mo강의 초음파 특성 변화)

  • Nam, Young-Hyun;Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.353-358
    • /
    • 2013
  • The ultrasonic characteristics of 2.25Cr-1Mo steel were investigated in relation to the isothermal heat treatment temperature and time. Charpy impact tests and hardness tests were conducted on individual specimens with three different heat treatment conditions. A pulse-echo method with longitudinal waves was used to measure the attenuation and velocity of ultrasonic waves. The FATT (fracture appearance transition temperature) increased with an increase in the isothermal heat treatment time, which implies that the toughness decreased. As the isothermal heat treatment time and temperature increased, the longitudinal wave velocity and ultrasonic attenuation coefficient were raised.

Evaluation of the Thermal Degradation in Co-based Superalloy using High frequency Transducer of Scanning Acoustic Microscope (초음파현미경의 고주파 초음파 탐촉자를 이용한 코발트기 초내열합금강의 열화평가)

  • Park, Ik-Keun;Cho, Dong-Su;Kim, Yong-Kwon;Lim, Jae-Seang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.518-524
    • /
    • 2004
  • The feasibility of Y(z) curve method of scanning acoustic microscope using high frequency transducer was experimentally studied for assessment of the thermal degradation in Co-based superalloy. Thermal degradation was performed to simulate the microstructural changes in Co-based superalloy arising from long term exposure at high temperature. Longitudinal wave velocity measured by pulse echo method using 10MHz transducer and leaky surface acoustic wave (LSAW) velocity measured by V(z) curve method using 200MHE transducer were measured to investigate the effect on thermal degradation. Ultrasonic velocity decreased as the aging time increased in both ultrasonic waves. Moreover, the low frequency longitudinal wave velocity decreased a little. Otherwise, the high frequency LSAW velocity drastically decreased up to a maximum of 4.7% at the aging time of 4,000hours. A good correlation was found between LSAW and Vickers hardness. Consequently, V(z) curve method of SAM using high frequency transducer could be a potential tool for assessing thermal degradation.

The Features Extraction of Ultrasonic Signal to Various Type of Defects in Solid (고체내부의 결함형태에 따른 초음파 신호의 특징추출)

  • Shin, Jin-Seob;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.62-67
    • /
    • 1995
  • In this paper, the features extraction of reflected ultrasonic signals from various type of defects existing in Al metal has been studied by digital signal processing. Since the reflected signals from various type of the defects are ambiguous in features distinction from effects of noise, Wiener filtering using AR (auto-regressive) technique and least-absolute-values norm method has been used in features extraction and comparison of signals. In this experiment, three types of the defect in aluminum specimen have been considered: a flat cut, an angular cut, a circular hole. And the reflected signal have been measured by pulse-echo methods. In the result of digital signal processing of the reflected signal, it has been found that the features extraction method have been effective for classification of the reflected signals from various defects.

  • PDF

Analysis of Ultrasonic Scattering from Side-drilled Holes (원주형 기공에 대한 초음파 산란 해석)

  • Jeong, Hyun-Jo;Park, Moon-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.559-565
    • /
    • 2004
  • Two different methods were used for the scattering analysis of side-drilled holes(SDH). The scattering models include an explicit model based on the Kirchhoff approximation and the solution of the exact separation of variables. The far-field scattering amplitude was calculated and their time-domain results were compared for the case of shear vertical wave. The exact solution predicts the existence of the creeping wave. The Kirchhoff approximation agreed to the exact solution, except the case of the creeping wave. Two measurement models were introduced to predict the response from the SDHs for the case of immersion, pulse-echo testing. The received voltage was calculated for the case of the shear vertical waves with the incident angle of $45^{\circ}$ to the SDH with the diameter of 1mm, and compared with the experimental results.

Comparison of Utrasonic and Vibration Diagnostic Techniques for the Inspection of Pipes in CVD System (화학증착 시스템에서의 파이프내 오염입자 관찰을 위한 초음파 및 진동 진단법의 비교연구)

  • Yun Ju-Young;Seong Dae-Jin;Shin Yong-Hyoen;Lee Ji-Hun;Moon Doo-Kyung;Kang Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.421-426
    • /
    • 2006
  • In examining particulate deposits in the pipes of a chemical vapor deposition (CVD) system, vibration diagnostics is compared and studied against ultrasonic diagnostics, The latter method involves pulsing the outer wall of pipes with an ultrasonic sensor and analyzing the resulting echo to observe particulate deposits inside pipes. Vibration diagnostics examines the existence of particulate deposits by analyzing the difference in the frequencies generated when a vibrator is adhered to the outer wall of pipes. With ultrasonic diagnostics, good test results were obtained only when particulate deposits were attached to the inner wall of the pipes, After some time, however, particulate deposits were not detected properly, as the ultrasonic wave failed to cross the fine gaps created between the inner wall of the pipe and the deposits. The ultrasonic wave bounced back because of the dried particulate deposits on the wall. Thus, it has been proven that the ultrasonic diagnostics is not an appropriate means of examining the particulate deposits in a vacuum, On the other hand, vibration diagnostics succeeded in detecting the particulate deposits regardless of the lapsed time. In conclusion, the vibration diagnostics is being expected as the effective method in monitoring the particulate deposits inside pipes in the CVD system where the desired behavior is reduced frequency along with the particulate deposits in comparison to the case where the pipe is clean.

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

Evaluation of the Surface Crack by a Large Aperture Ultrasonic Probe (대구경 초음파 탐촉자를 이용한 표면균열 평가)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.180-185
    • /
    • 2004
  • Conventional ultrasonic examination to detect micro and small surface cracks is based on the pulse-echo technique using a normal immersion focused transducer with high frequency, or an angle-beam transducer generating surface waves. It is difficult to make an automatic ultrasonic system that can detect micro and small surface cracks and position in a large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of the transducer. In this study, a high-precision scanning acoustic microscope with a 10MHz large-aperture transducer has been used to assess the existence, position and depth of a surface crack from the real-time A, B, C scans obtained by exploiting the ultrasonic diffraction. The ultrasonic method with large aperture transducer has improved the accuracy of the crack depth assessment and also the scanning speed by ten times, compared with the conventional ultrasonic methods.