• 제목/요약/키워드: 펄스 마이크로 전해가공

검색결과 8건 처리시간 0.022초

전원특성에 따른 마이크로 전해가공에 관한 연구 (A Study on the Electrochemical Micromachining with Various Pulse Currents)

  • 박정우;이은상;문영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.942-945
    • /
    • 2001
  • Pulse electrochemical micromachining offers significant improvements in dimensional accuracy as compared with conventional electrochemical machining. One primary issue in pulse electrochemical micromachining is to identify and control machining depth as well as interelectrode gap size. This paper presents an identification method for the machining depth by in-process analysis of machining current and interelectrode gap size. The inter electrode gap characteristics, including pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analysed based on the model and experiments.

  • PDF

미세 펄스 전압을 이용한 마이크로 전해가공에 관한 연구 (A study of electrochemical micromachining with voltage pulses)

  • 조창래;백승엽;이은상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.356-361
    • /
    • 2003
  • Electrochemical micromachining which is not normally considered as a precision process is presented in this paper. The application of voltage Pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with micrometer precision. In this paper tool-electrodes($5\mu\textrm{m}$ in diameter, 1mm in length) are developed by electrochemical micromaching and micro holes are manufactured using this tool-electrodes we developed already. Micro holes are achieved the accuracy below $50\mu\textrm{m}$ in diameter using ultrashort voltage pulses(0.1-5$\mu\textrm{s}$).

  • PDF

미세 홈 형성을 위한 마이크로 전해가공에 관한 연구 (A Study on the Electrochemical Micro-machining for Fabrication of Micro Grooves)

  • 박정우;이은상;문영훈
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2002
  • A specially-built EMM (Electrochemical Micro Machining) / PECM (Pulse Electrochemical Machining) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small & stable gap control unit are developed to achieve accurate dimensions of recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloridc arc applied in this study. The farmer electrolyte has better machine-ability than the latter one because of its appropriate changing to the transpassive state without pits on the surface of workpiece. It is easier to control the machining depth precisely by micrometer with pulse current than direct current. This paper also presents an identification method for the machining depth by in-process analysis of machining current and inter electrode gap size. The inter electrode gap characteristics, inc1uding pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analyzed based on the model and experiments.

와이어 펄스 전해 가공을 이용한 미세 홈 제작 (Micro-groove Fabrication by Wire Electrochemical Machining with Ultra Short Pulses)

  • 나찬욱;박병진;김보현;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.37-44
    • /
    • 2005
  • In this paper, wire electrochemical machining (Wire ECM) with ultra short pulses is presented. Platinum wire with $10{\mu}m$ diameter was used as a tool and 304 stainless steel was locally dissolved by electrochemical machining in 0.1M $H_{2}SO_4$ electrolyte. Wire ECM can be easily applied to the fabrication of arbitrarily shaped micro-grooves without tool wear. The change of machining gap according to applied pulse voltage, pulse on-time and pulse period was investigated and the optimal pulse condition for stable machining was obtained. Using this method, various micro-grooves with less than $20{\mu}m$ width were fabricated.

Dynamic Bearing의 초정밀 ECM 가공 특성에 관한 연구 (A study on the Ultra precision ECM for Dynamic bearing)

  • 신현정;김영민;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.151-154
    • /
    • 2002
  • In this paper a mathematical model, the results of computer simulation and exprimental investigations of electrochemical machining with a too-electrode are presented. The experimental investigations were carried out in order to evaluate the influence of working voltage, initial interelectrode gap size, and metal remove rate. Accuracy of computer simulation evaluated by differences between results of experimental test and computer simulation depends on electrochemical machining coefficient, total overpotential of electrode process, current density, electrical conductivity of electrolyte, and etc. Metal removal rate would be predicted by the simulation of ECM process.

  • PDF

구연산을 이용한 스테인레스 스틸의 미세 전해가공 (Micro Electrochemical Machining of Stainless Steel Using Citric Acid)

  • 류시형
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.134-140
    • /
    • 2008
  • Micro electrochemical machining (ECM) is conducted on stainless steel 304 using non-toxic electrolyte of citric acid. Electrochemical dissolution region is minimized by applying a few hundred second duration pulses between the tungsten SPM tip and the work material. ECM characteristics according to citric acid concentration, feeding velocity and electric conditions such as pulse amplitude, pulse frequency, and offset voltage are investigated through a series of experiments. Micro holes of $60{\mu}m$ in diameter with the depth of $50{\mu}m$ and $90{\mu}m$ in diameter with the depth of $100{\mu}m$ are perforated. Square and circular micro cavities are also manufactured by electrochemical milling. This research can contribute to the development of safe and environmentally friendly micro ECM process.

마이크로 펄스 전해 복합가공에 관한 연구 (Study on the new development of combined electrochemical processes using pulse current)

  • 박정우;이은상;문영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2002
  • Some investigators who have tried to achieve the highly smooth surface finish using electrochemical processes have reported that high current density produced lustrous surfaces while the opposite conditions produced a passive layer and had a tendency to produce a black surface. However, processing at a low current density may produce a non-lustrous surface but the improvement of dimensional accuracy of the surface is significant. The surface with pulse process was a bit more lustrous than with continuous current but the black passive layer still could be found at grooved surface. There are two ways to achieve highly smooth surface finish. One is brushing it with a brush the other is electrochemical machining (ECM) with high current. The former method is the most common polishing practice, but not only may the surface obtained differ from operator to operator, but precision smooth surface on micro grooves are difficult to obtain. The latter one recently has been used to produce a highly smooth surface after EDM process. However, the material removal rate in ECM with high current is relatively high. Hence the original shape of the micro grooves, which was formed by electrochemical micro-machining (EMM) process, may be destroyed. In this study, an electrochemical polishing process using pulse current is adopted as a possible alternative process when micro grooves formed by EMM process should be polished. Mirror-like micro grooves with lustrous and smooth surface can be produced electrochemically with pulse current because the voltage and current used can be lower than the case of continuous current. This study will discuss the accurate control of physical and electrical conditions so as to achieve mirror-like micro grooves with lustrous and smooth surface without destroying the original shape of micro grooves.

  • PDF

전류인가 방법이 3D-SiP용 Through Via Hole의 Filling에 미치는 영향 (The Effects of Current Types on Through Via Hole Filling for 3D-SiP Application)

  • 장근호;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제13권4호
    • /
    • pp.45-50
    • /
    • 2006
  • 3D package의 SiP에서 구리의 via filling은 매우 중요한 사항으로 package밀도가 높아짐에 따라 via의 크기가 줄어들며 전기도금법을 이용한 via filling이 연구되어왔다. Via filling시 via 내부에 결함이 발생하기 쉬운데 전해액 내에 억제제, 가속제등 첨가제를 첨가하고 펄스-역펄스(PRC)의 전류파형을 인가하여 결함이 없는 via의 filling이 가능하다. 본 연구에서는 건식 식각 방법 중 하나인 DRIE법을 이용하여 깊이 $100{\sim}190\;{\mu}m$, 직경이 각각 $50{\mu}m,\;20{\mu}m$인 2가지 형태의 via을 형성하였다. DRIE로 via가 형성된 Si wafer위에 IMP System으로 Cu의 Si으로 확산을 막기 위한 Ta층과 전해도금의 씨앗층인 Cu층을 형성하였다. Via시편은 직류, 펄스-역펄스의 전류 파형과 억제제, 가속제, 억제제의 첨가제를 모두 사용하여 filling을 시도하였고, 공정 후 via의 단면을 경면 가공하여 SEM으로 관찰하였다.

  • PDF