• 제목/요약/키워드: 퍼지-슬라이딩 모드 제어기

검색결과 63건 처리시간 0.027초

로봇 매니퓰레이터의 추적 제어를 위한 퍼지 적응 슬라이딩 모드 제어기 (A Fuzzy Adaptive Sliding Mode Controller for Tracking Control of Robotic Manipulators)

  • 이진용;강희준
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.555-561
    • /
    • 2012
  • This paper describes the design of a fuzzy adaptive sliding mode controller for tracking control of robotic manipulators. The proposed controller incorporates a modified traditional sliding mode controller to drive the system state to a sliding surface and then keep the system state on this surface, and a fuzzy logic controller to accelerate the reaching phase. The stability of the control system is ensured by using Lyapunov theory. To verify the effectiveness of the proposed controller, computer simulation is conducted for a five-bar planar robotic manipulator. The simulation results show that the proposed controller can improve the reaching time and eliminate chattering of the control system at the same time.

디스크 스피닝 성형기의 유압 및 제어시스템 설계 (Design of Hydraulic & Control System for the Disc Spinning Machine)

  • 강정식;박근석;강이석
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.157-165
    • /
    • 2002
  • The design of hydraulic & control system has been developed for the disc spinning machine. The hydraulic system has been designed in the overall system including the vertical & horizontal slide fur spinning works which are controlled by hydraulic servo valves in right & left side, and the clamping slide for holding & pressing blank material in center during spinning process. Based on the design concept of this hydraulic system, model test experiments for hydraulic servo control system is tested to conform confidence and applying possibility. The control system is introduced with the fuzzy-sliding mode controller for the hydraulic force control reacting force as a disturbance, because a fuzzy controller does not require an accurate mathematical model for the generation of nonlinear factors in the actual nonlinear plant with unknown disturbances and a sliding controller has the robustness & stability in mathematical control algorithm. We conform that the fuzzy-sliding mode controller has a good performance in force control for the plant with a strong disturbance. Also, we observe that a steady state error of the fuzzy-sliding mode controller can be reduced better than those of an another controllers.

퍼지신경망과 강인한 마찰 상태 관측기를 이용한 비선형 마찰 서보시스템에 대한 강인 제어 (Robust Control for Nonlinear Friction Servo System Using Fuzzy Neural Network and Robust Friction State Observer)

  • 한성익
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper, the position tracking control problem of the servo system with nonlinear dynamic friction is issued. The nonlinear dynamic friction contains a directly immeasurable friction state variable and the uncertainty caused by incomplete parameter modeling and its variations. In order to provide the efficient solution to these control problems, we propose the composite control scheme, which consists of the robust friction state observer, the FNN approximator and the approximation error estimator with sliding mode control. In first, the sliding mode controller and the robust friction state observer is designed to estimate the unknown internal state of the LuGre friction model. Next, the FNN estimator is adopted to approximate the unknown lumped friction uncertainty. Finally, the adaptive approximation error estimator is designed to compensate the approximation error of the FNN estimator. Some simulations and experiments on the servo system assembled with ball-screw and DC servo motor are presented. Results show the remarkable performance of the proposed control scheme. The robust friction state observer can successfully identify immeasurable friction state and the FNN estimator and adaptive approximation error estimator give the robustness to the proposed control scheme against the uncertainty of the friction parameters.

퍼지-슬라이딩 모드 적응제어기에 의한 유도기 속도제어 (Speed Control of Induction Motor Using Fuzzy-Sliding Adaptive Controller)

  • 윤병도;김윤호;김찬기;양성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.331-333
    • /
    • 1995
  • A high performance motor drive system must have a good speed command tracking, a insensitivity to a parameter variation and sampling time. In this paper, a robust speed controller for an induction motor is proposed. The speed controller is fuzzy-sliding adaptive controller and its system continuously is varied. That is, only P gain act in dynamic state, I gain in steady-state. Because this system is a sort of adaptive control system, global stability analysis is used to Lyapunov function. Consequently, in this paper application of fuzzy sliding adaptive controller to induction motor controlled by vecter control is presented and the control system is digitally implemented within DSP.

  • PDF

능동전륜조향장치 및 능동후륜제동장치의 통합제어기 개발 (Development of an Integrated Control System between Active Front Wheel System and Active Rear Brake System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.17-23
    • /
    • 2012
  • An integrated dynamic control (IDCF) with an active front steering system and an active rear braking system is proposed and developed in this study. A fuzzy logic controller is applied to calculate the desired additional steering angle and desired slip of the rear inner wheel. To validate IDCF system, an eight degree of freedom, nonlinear vehicle model and a sliding mode wheel slip controller are also designed. Various road conditions are used to test the performance. The results show that the yaw rate of IDCF vehicle followed the reference yaw rate and reduced the body slip angle, compared with uncontrolled vehicle. Thus, the IDCF vehicle had enhanced lateral stability and controllability.

퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어 (Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator)

  • 김현식;박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권8호
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

수중운동체의 호버링시스템을 위한 퍼지 슬라이딩 모드 제어기 설계 (A fuzzy sliding mode controller design for the hovering system of underwater vehicles)

  • 김종식;김성민
    • 제어로봇시스템학회논문지
    • /
    • 제1권1호
    • /
    • pp.25-32
    • /
    • 1995
  • Nonlinear depth control algorithms for the hovering system of underwater vehicles are presented. In this paper, a nonlinear effect in heave motion for underwater vehicles, a deadzone effect of the flow control valve in the hovering tank and an impact disturbance are considered. In this situation, in order to choose a desirable controller, sliding mode controller and fuzzy sliding mode controller are designed and compared. The computer simulation results show that the fuzzy sliding mode control system is more suitable in order to maintain a desirable depth of an underwater vehicle with a deadzone and impact disturbance.

  • PDF

슬라이딩 모드 제어에 기반한 퍼지 제어기 설계에 관한 연구 (A Study on Design of Sliding Mode Control-based Fuzzy Control)

  • 장병훈;고재호;유창완;배영철;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.536-538
    • /
    • 1997
  • In this paper, a sliding mode control-based fuzzy controller is suggested. It is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances. An inverted pendulum is effectively controlled by the proposed method in spite of existing model uncertanties and parameter disturbances.

  • PDF

퍼지 슬라이딩 모드 제어기를 이용한 양측식 가동 자석형 LDM의 위치 제어 (Position Control of a Double-Sided MM Type LDM Using Fuzzy Sliding Mode Control)

  • 김진우;김영태;이동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.784-786
    • /
    • 1995
  • Variable Structure Control(VSC) scheme with sliding mode is widely used to keep a control system insensitive to parameter variations and disturbances. However, the conventional sliding mode control has the undesired phenomenon of chattering which may become a serious problem. Also the restriction of the sliding mode regime cannot guarantee the insensitivity throughout an entire response. In this paper, the sliding surfaces, which are composed of three-line segments, are used to remove the reaching phase. Also, the concept of fuzzy logic is incorporated with the sliding mode control in order to control the unknown or partially known systems effectively. The proposed method is applied to a Double-Sided MM Type LDM to show its usefulness.

  • PDF

유압식 인버터 제어기의 속도제어를 위한 퍼지기반 하이브리드 슬라이딩모드 제어기 설계 (Fuzzy-based Hybrid Fuzzy-Sliding Mode Controller for the Speed Control of a Hydraulic Inverter Controller)

  • 한권상;최병욱;안현식;김도현
    • 제어로봇시스템학회논문지
    • /
    • 제9권3호
    • /
    • pp.218-226
    • /
    • 2003
  • Due to the friction characteristics of pump, cylinder packing and passenger car, in the elevation system actuated with hydraulic inverter, there exist dead zones. which cannot be controlled by a PID controller. To overcome the drawbacks, in this paper, we propose a new hybrid fuzzy-sliding mode control scheme, which controls the controller output between a sliding mode control output and a PID control output by fuzzy control method. The proposed hybrid control scheme achieves an improved control performance by using both controllers. We first propose a design method of the hybrid controller far a hydraulic system controlled by inverters, then propose a design method of a hybrid fuzzy-sliding mode centre] scheme. The effectiveness of the proposed control scheme is shown by simulation results, in which the proposed hybrid control method yields better control performance then the PID controlled scheme, not only in the zero-crossing speed region but also in the overall control region including steady-state region.