• Title/Summary/Keyword: 퍼지-뉴럴

Search Result 159, Processing Time 0.047 seconds

Evolutionarily Optimized Design of Self-Organized Fuzzy Polynomial Neural Networks by Means of Dynamic Search Method of Genetic Algorithms (유전자 알고리즘의 동적 탐색 방법을 이용한 자기구성 퍼지 다항식 뉴럴 네트워크의 진화론적 최적화 설계)

  • Park Ho-Sung;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • 본 논문에서는 자기구성 퍼지다항식 뉴럴 네트워크(SOFPNN)를 구성하고 있는 퍼지 다항식뉴론(FPM)의 구조와 파라미터를 유전자 알고리즘을 이용하여 최적화시킨 새로운 개념의 진화론적 최적 고급 자기구성 퍼지 다항식 뉴릴 네트워크를 소개한다. 기존의 자기구성 퍼지 다항식 뉴럴 네트워크에서 모델을 설계할 때에는 설계자의 주관적인 특징과 시행착오에 의해서 모델을 구축하였다. 이러한 설계자의 경험을 배제하고 객관적이고 효율적인 모델을 구축하기 위해서 본 논문에서는 FPH의 파라미터들을 최적화 알고리즘인 유전자 알고리즘을 이용하여 동조하였다. 즉, 모델을 구축하는데 기본이 되는 FPN의 각각의 파라미터들-입력변수의 수, 다항식 차수, 입력변수, 멤버쉽 함수의 수, 그리고 멤버쉽 함수의 정점-을 동조함으로써 기존의 모델에 비해서 구조적으로 그리고 파라미터적으로 최적화된 네트워크를 생성할 수 있다. 뿐만 아니라 주어진 데이터의 특성을 모델 구축에 반영하고자 멤버쉽 함수의 정점 역시 유전자 알고리즘으로 동조하였다. 실험적 예제를 통하여 제안된 모델의 성능을 확인한 결과 기존의 퍼지모델 및 신경망 모델에 비해서 아주 우수한 근사화 능력과 일반화 능력을 가짐을 알 수 있다.

  • PDF

Navigation of Autonomous Mobile Robot using Fuzzy Neural Network (퍼지-뉴럴 네트워크를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 2008
  • This paper proposes a hierarchically structured navigation algorithm for autonomous mobile robot under unknown environment based on fuzzy-neal network. The proposed algorithm consists of two basic layers as follows. The lower layer consists of two parts such as fuzzy algorithm for goal approach and fuzzy-neural algorithm for obstacle avoidance. The upper layer which is basically fuzzy algorithm adjusts the magnitude of the weighting factor depending on the environmental situation. The proposed algorithm provides an efficient method to escape local mimimum points as shown in the simulation result. Most simulation results show that this algorithm is very effective for autonomous mobile robots' traveling in unknown field.

Evolutionally optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Relation and Genetic Algorithms: Analysis and Design (퍼지관계와 유전자 알고리즘에 기반한 진화론적 최적 퍼지다항식 뉴럴네트워크: 해석과 설계)

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.236-244
    • /
    • 2005
  • In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Genetically Optimized Design of Fuzzy Neural Networks for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위한 퍼지뉴럴네트워크의 유전자적 최적 설계)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1891-1892
    • /
    • 2008
  • 본 논문에서는 부분방전 패턴인식을 위한 퍼지뉴럴네크워크(Fuzzy-Nueral Network를 설계한다. 퍼지뉴럴네트워크의 구조에서 규칙의 전반부는 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 유전자 알고리즘을 이용하여 각 입력에 대한 전반부 멤버쉽함수의 정점과 학습률 및 모멤텀 계수를 최적으로 동조한다. 제안된 네트워크는 부분방전 패턴인식을 위해 다중 출력을 가지며, 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 256개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류하며, 패턴인식률로서 결과를 분석한다.

  • PDF

Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space (개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Kim, Byun-Gon;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • In this paper, we introduce the fuzzy neural network based on the individual input space to design the pattern recognizer. The proposed networks configure the network by individually dividing each input space. The premise part of the networks is independently composed of the fuzzy partition of individual input spaces and the consequence part of the networks is represented by polynomial functions. The learning of fuzzy neural networks is realized by adjusting connection weights of the neurons in the consequent part of the fuzzy rules and it follows a back-propagation algorithm. In addition, in order to optimize the parameters of the proposed network, we use real-coded genetic algorithms. Finally, we design the optimized pattern recognizer using the experimental data for pattern recognition.

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Intellignce Modeling of Nonlinear Process System Using Fuzzy Neyral Networks-based Structure (퍼지-뉴럴네트워크 구조에 의한 비선형 공정시스템의 지능형 모델링)

  • 오성권;노석범;남궁문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.41-55
    • /
    • 1995
  • In this paper, an optimal idenfication method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together wlth optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzzy-neural networks(FNNs) are tuned automatically using improved modified complex method and modified learning algorithm. For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activateti sluge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

A Study on Speech Recognition Using Fuzzy Pattern Matching (퍼지패턴매칭에 의한 음성인식에 관한 연구)

  • 이기영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.3-6
    • /
    • 1991
  • 본 연구에서는 음성의 패턴작성법을 개선하고 음성인식율을 향상시키기 위하여 퍼지패턴매칭을 개선한 뉴럴퍼지패턴매칭에(a neural-fuzzy pattern matching)의해 특정화자 고립단어인식을 수행하였다. 이 방법에서는 신경회로망의 연상기억에 의한 사상에 의해 패턴을 작성하여 주파수변동을 흡수하고 표준패턴고 선형매칭에 의해 유사도를 측정하여 인식하므로써 시간변동의 문제를 보완하였다. 또한, 이 방법에서 사용하는 특징피라미터는 2진화 스펙트럽이며, 유사도는 논리연산에 의해 측정되기 때문에 종래의 왜곡척도를 이용한 DTW 방법에 비해 기억용량과 계산량이 매우 작다. 이 방법의 인식성능을 평가하기 위하여 남녀가 발성한 28개의 도시명을 대상으로 인식실험을 수행한 결과, 신경회로망을 이용하지 않은 퍼지패턴매칭보다 오인식을 감소시켰으며, 뉴럴-퍼지 패턴매칭에 의한 특정화자 고립단어인식의 우수성을 확인하였다.

  • PDF

Estimation current reference using Fuzzy-Neural networks for BLDC motor (퍼지-뉴럴 네트워크를 이용한 BLDC 모터 전류 기준값 추정)

  • Hwang, Chan-Gil;Park, Ki-Kwang;Kim, Dong-Ok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1648_1649
    • /
    • 2009
  • BLDC는 낮은관성, 빠른응답, 높은 전력밀도, 높은 신뢰성 및 유지보수를 요구하지 않기 때문에 산업용 어플리케이션에 널리 이용되고 있다. BLDC는 종래의 영구자석 DC모터의 운영 특성을 보이고 있지만 기계적인 정류자와 브러쉬를 제거 하였다. BLDC의 경우 자속이 일정하기 때문에 속도 제어가 중요하다. 회전자의 속도를 제어하기 위해 전류 지령치를 퍼지 뉴럴 네트워크를 이용하여 제어치를 추정한다.

  • PDF

풍력 발전 출력 예측을 위한 퍼지 뉴런 기반의 예측 모델 개발

  • Gang, Jong-Jin;Park, Gyu-Yeong;Han, Chang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.673-673
    • /
    • 2013
  • 최근 시대의 흐름에 따라 많은 에너지의 사용으로 여러 가지 에너지원이 필요로 하게 되면서 지금까지는 석탄, 석유 등 매장된 에너지원을 사용하고 있지만, 최근 에너지 위기와 여러 가지의 환경문제가 대두 되면서 세계적으로 새로운 청정에너지원을 필요로 하게 되었다. 그 결과 태양광, 풍력, 지열 등 여러 가지의 신재생에너지원이 대두되게 되었으며, 여러 가지의 신재생에너지원 중 주목받고 있는 풍력에너지에 대한 연구가 현재 활발히 진행 중에 있다. 풍력발전은 바람의 에너지를 이용해 블레이드에 연결된 터빈을 구동하여 전기 에너지를 얻는 방식이며, 아직까지는 많은 곳에서 사용될 만큼 생산이 되지 않고 있지만 조만간 많은 곳에서 쓰일 것으로 예상된다. 풍력발전 시스템이 전력시장에서 차지하는 비중이 점차 증가하고 있으나 풍향, 풍속 등의 변화로 인하여 안정적인 발전 출력을 항상 보장할 수 없다. 그러므로 본 논문에서는 실제 풍력발전기로부터 수집된 풍향, 풍속, 발전출력 데이터를 처리하여 데이터베이스를 구축하고, 퍼지 뉴런에 기반한 퍼지-뉴럴 네트워크 예측 모델을 이용하여 풍력발전 출력을 예측하였다.

  • PDF