• Title/Summary/Keyword: 퍼지 집합

Search Result 415, Processing Time 0.033 seconds

Pattern Classification using Fuzzy Suppot Vector machine (퍼지 써포트 벡터 머신을 이용한 패턴 분류)

  • Lee, Sun-Young;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2540-2542
    • /
    • 2004
  • 일반적으로 support vector machine (SVM)은 입력 데이터를 두개의 다른 클래스로 구별하는 결정면을 학습을 통하여 구한다. 특히 비분류 문제, 비선형 분류 문제들과 같은 두-클래스 문제를 해결하기 위해 데이터를 고차원의 특정 공간에서 다룬다. 많은 응용분야에서, 각 입력 데이터들은 이 두개의 클래스 중의 하나로 완전히 정의되지 않을 수도 있다. 이러한 문제를 해결하기 위해 우리는 본 논문에서 FSVM(fuzzy support vector machine)을 적용한다. 각 입력 데이터에 퍼지 멤버십(fuzzy membership)을 적용하여 결정면의 학습과정에 입력 데이터들이 다른 기여 (contribution)를 할 수 있게 한다. 본 논문에서는 기준 데이터 집합에 대해 제안된 방법을 실험하고, FSVM이 기존의 SVM보다 더 나음을 보인다.

  • PDF

Optimized Polynomial RBF Neural Networks Based on PSO Algorithm (PSO 기반 최적화 다항식 RBF 뉴럴 네트워크)

  • Baek, Jin-Yeol;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1887-1888
    • /
    • 2008
  • 본 논문에서는 퍼지 추론 기반의 다항식 RBF 뉴럴네트워크(Polynomial Radial Basis Function Neural Network; pRBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델은 "IF-THEN" 형식으로 기술되는 퍼지 규칙에 의해 조건부, 결론부, 추론부의 기능적 모듈로 표현된다. 조건부의 입력공간 분할에는 HCM 클러스터링에 기반을 두어 구조가 결정되며, 기존에 주로 사용된 가우시안 함수를 RBF로 이용하고, 원뿔형태의 선형 함수를 제안한다. 또한 입력공간 분할시 데이터 집합의 특성을 반영하기 위해 분포상수를 각 입력마다 고려하여 설계함으로서 공간 분할의 정밀성을 높인다. 결론부에서는 기존 상수항의 연결가중치를 다항식 형태로 표현하는 pRBFNN을 제안한다. 제안한 모델의 성능을 평가하기 위해 Box와 Jenkins가 사용한 가스로 시계열 데이터를 적용하고, 기존 모델과의 근사화와 일반화 능력에 대하여 토의한다.

  • PDF

The development of fuzzy reasoning tool for the support design of servo system (서보 제어계 설계지원을 위한 퍼지추론 TOOL의 개발)

  • 노창주;홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.72-78
    • /
    • 1995
  • The diffusion of fuzzy logic techniques into real applications requires specific software supports which save development time and reduce the programming effort. But we has been lack of a tool devoted to support the design of fuzzy controllers. In this paper, on the basis of the general fuzzy set and .alpha.-cut set decomposition of fuzzy sets, a set of fuzzy reasoning tool(FRT) devoted to support the design of fuzzy dontroller for servo systems is developed. The major features of this tool are: 1) It supports users to analyze fuzzy ingerence status based on input deta and expected results by three-D graphic display. 2) It supports users to prepare input data and expected result. 3) It supports users to tuned scaling factor of membership functions, rules and fuzzy inference. The paper shows how the suggested design tools are suitable to give a consistent answer to the tuning of fuzzy control system. This FRT is expected to exert good performance and devoted to support which the design of fuzzy controller is illustrated in the servo systems.

  • PDF

Thesaurus Model based on Fuzzy Linguistic Relation Degree (퍼지 언어적 관련도에 근거한 시소러스 모델)

  • 최명복;김민구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.72-74
    • /
    • 1998
  • 정보검색 시스템에서 시소러스는 정보항목에 대한 용어들간의 관계를 계층적 구조로 나타낸다. 따라서 정보검색 시스템에서 시소러스의 사용은 이용자의 질의에 있는 탐색어와 관련된 정보항목들을 검색할 수 있기 때문에 정보검색 시스템의 검색효율을 크게 증가시킬 수 있다. 그러나 기존의 시소러스 모델들은 용어들간의 관련 정도를 무시하거나 정량적인 수치값으로 부여하기 때문에 인간의 주관성과 부정확성을 다루는데 적합하지 않다. 용어들간 의미의 밀접한 정도(Degree of Closeness)는 모호하고 부정확한 판단에 근거하는 인간의 정성적인 측정 단위이다. 그러므로 관련정도를 정량적으로 표현하는 것은 정성적 개념을 정확한 숫자 값으로 변환하는 것이기 때문에 인간의 정성적 측정 단위를 정확하고 용이하게 정량적으로 측도하여 반영한다는 것은 어렵다. 따라서 본 논문에서는 용어들간의 관련도를 정성적으로 부여한 시소러스 모델을 제안한다. 이 시소러스 모델에서는 색인어간의 관련도를 정성적으로 표현하기 위해 퍼지 집합 이론에 근거한 언어적 설명자들을 정의한다. 언어적 설명자들은 존재론적 문제가 고려되고 다분히 인식론적인 표현에 근거한다.

  • PDF

Web Usage Mining Using Fuzzy Association Rule Considering User Feedback (사용자의 피드백을 통한 퍼지 연관규칙의 웹 사용자 마이닝)

  • 장재성;오경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.49-51
    • /
    • 2001
  • 데이터 마이닝은 KDD의 분야로서, 의미 있는 정보와 관심 있는 행동 패턴을 추출해 나가는 과정이다. WWW의 발전으로, 웹 데이터가 거대해지고 있다. 이러한 데이터 마이닝 분야에서도, 웹 사용 마이닝의 목적은 의미 있는 사용자 행동 패턴을 찾아내는 것이다. 특히 현재 전자상거래가 널리 활성화되고 있는 환경에서, 사용자의 특성을 발견해내는 것은 매우 중요한 부분이다. 사용자의 특성에 따라 사용자에게 상품을 추천하거나 메일을 보내는 것이나 사용자에게 적절하게 사이트를 구축하는 것이 가능하다. 전처리 과정을 통해서 추출된 트랜잭션 데이터를 모호한 사용자의 요구를 분석할 수 있는 퍼지 집합으로 변형시켜 Fuzzy Association Rule을 통해 분석한다. 그리고 분석된 결과에 대한 규칙을 사용자의 피드백을 통해서 다시 분석하는 과정을 거치게 된다. 사용자의 요구 사항을 적절히 반영할 수 있다.

  • PDF

A Bottom-Up Approach for Mining Multiple-Level Association Rules Using Fuzzy Concert Hierarchies (퍼지 개념 계층을 이용한 다중 수준 연관 규칙 마이닝의 상향식 접근)

  • Sohn, Bong-Ki;Han, Sang-Hun;Lee, Keon-Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.1445-1448
    • /
    • 2000
  • 이 논문에서는 개념간의 애매한 관계를 적절히 표현할 수 있는 퍼지 개념 계층을 참조하여 최하위 개념 수준에서부터 최상위 개념 수준까지 각 수준에서 연관 규칙을 추출하는 다중 수준 상향식 연관규칙 마이닝 방법을 제안한다. 상위 개념 수준에서 빈발 항목 집합을 구하는데 필요한 상위 개념 수준의 트랜잭션 데이터베이스를 생성하는 방법을 소개한다. 또한 제안한 방법의 응용성을 보이기 위해 실험 과정과 결과를 보인다.

  • PDF

Interval type-2 fuzzy radial basis function neural network (Interval 제 2 종 퍼지 radial basis function neural network)

  • Choe, Byeong-In;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF

A gene filtering method based on fuzzy pattern matching for whole genome microarray data analysis (마이크로어레이 데이터의 게놈수준 분석을 위한 퍼지 패턴 매칭에 의한 유전자 필터링 방법)

  • Lee, Seon-A;Lee, Geon-Myeong;Lee, Seung-Ju;Kim, Won-Jae;Kim, Yong-Jun;Bae, Seok-Cheol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.145-148
    • /
    • 2007
  • 생명과학분야에서 마이크로어레이 기술은 세포에서의 RNA 발현 프로파일을 관찰할 수 있도록 함으로써 생명현상의 규명 및 약물개발 둥에서 분자수준의 생명현상에 대한 관찰과 분석이 가능 해지고 있다. 마이크로어레이 데이터분석에서는 특정한 처리나 과정에서 현저한 특성을 보이는 유전자를 식별하기 위한 분석뿐만 아니라 유전자 전체인 게놈수준에서의 분석도 이루어진다. 최근 유전자의 발현이 다양한 조절, 신호전달 및 대사경로에 의해서 영향을 받고 있다는 관점에서 게놈수준의 분석에 관심이 증가하고 있다. 약물반응 실험에서는 약물에 대한 게놈수준의 발현 프로파일을 관찰하는 것도 많은 정보를 제공할 수 있다. 약물실험에서는 대조군과 실험군들간에 관심 있는 상대적인 발현특성을 갖는 유전자군을 전체적으로 추출하는 것이 필요한 경우가 있다. 예를 들면 정상군은 두개의 실험군에 대해서 중간청도의 발현정도를 갖는 유전자군을 식별하는 분석을 하는 경우, 생물학적인 데이터의 특성상 절대값을 비교하는 방법으로는 유용한 유전자들을 효과적으로 식별해 낼 수 없다. 이 논문에서는 정상군과 실험군들의 발현정도값의 경향을 판단하기 위해서 각 유전자에 대해서 집단별 대표값을 선정하여 퍼지집합으로 집단의 값의 범위를 결정하고, 이를 이용하여 특정 패턴을 갖는 유전자들을 식별해내는 방법을 제안하고, 실제 데이터를 통해서 실험한 결과를 보인다.

  • PDF

A Study on the Cost Risk Analysis Method for Construction Projects (건설 프로젝트의 코스트 리스크 분석방법론에 관한 연구)

  • Lee Dong-Un;Kim Yeong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.201-211
    • /
    • 2003
  • Considering about construction projects characteristics, there Is an existing uncertainty which causes inaccuracy or invalidity under decision making situation. Therefore, cost risk analysis of numerous construction projects are Inclined to depend on expert's experiences and subjective judgements. In Korean domestic construction works, however, there is no reasonable method or process for applying subjective elements. Only probabilistic analysis using objective calculation are being used now. This research suggests a cost risk analysis method to analyze quantitatively Cost Impact by risk, and it appraises expert's subjective elements for the purpose of enhancing validity of cost estimation. Moreover, a new cost risk analysis method is introduced for providing convenient user interface in practical business.

A Fuzzy Min-Max Neural Network(FMMNN) Based Gait Phase Classification Method using Electromyography(EMG) Signal (근전도 신호를 이용한 퍼지 최대-최소 신경망 기반 보행 단계 분류 방법)

  • Yi, Tae-Youb;Lee, Sang-Wan;Jang, Hyo-Young;Kim, Heon-Hui;Jung, Jin-Woo;Bien, Zeung-Nam
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.841-847
    • /
    • 2007
  • 최근 삶의 수준의 향상과 의학 기술의 발전으로 노인 인구가 증가하고 있다. 하지만 늘어나는 노인 인구에 비례하여 신체적 노화로 거동이 어려운 노인의 수 또한 증가하는 추세이다. 실제로 많은 노인 인구가 거동이 불편해 정상적인 생활을 하지 못하고 있기 때문에 보행 시 적절한 힘을 보조해 줄 수 있는 보행 보조 장치의 개발이 필요하다. 이 같은 보행 보조 장치를 개발함에 있어 보행자의 보행 패턴이 고려된다면 보행자의 걸음걸이에 맞춰 자연스럽게 힘을 보조해 줄 수 있기 때문에 보행자의 보행 단계 분류에 관한 연구가 선행되어야 한다. 그래서 본 논문에서는 하지 근전도 신호를 이용해 보행 단계를 구분하는 방법을 제안하고자 한다. 근전도 신호는 근육이 움직일 때 발생하는 아주 작은 전기적인 신호이다. 근전도 신호는 작은 잡음에도 민감하며, 전극을 부착하는 근육의 위치에 따라서도 값의 차이가 크기 때문에 근전도 신호의 획득 및 처리 방법이 중요하다. 위를 위해 피실험자 별 근육의 위치와 보행 속도를 달리하여 근전도 신호를 획득하고 획득한 신호로부터 여러 특징 값을 추출한다. 그리고 새로운 데이터에 대해 적응성이 강하고 시간에 따라 변하는 근전도 신호의 특성을 잘 반영할 수 있으며 각 집합(class)의 비선형 분리가 가능한 퍼지 최대-최소 신경망(Fuzzy Min-Max Neural Network: FMMNN)을 이용해 보행 단계를 분류해 본다. 실험 결과를 통해 제안한 방법의 타당성을 검증해 보고 보행자, 보행속도, 근전도 측정을 위한 근육의 위치가 보행 패턴 분류에 미치는 영향을 알아본다.

  • PDF