• Title/Summary/Keyword: 퍼지 생성 규칙

Search Result 186, Processing Time 0.022 seconds

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

Cognition-based Navigational Planning for Mobile Robots (인지에 기반한 이동 로봇의 운항계획)

  • Lee, In-K.;Lee, Dong-J.;Lee, Suk-Gyu;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.171-177
    • /
    • 2004
  • In this paper, we propose a cognition-based navigational algorithm for mobile robots in dynamic environments. The proposed algorithm consists of two main stages: (i) the fuzzy logic-based perception stage that constructs knowledge from the sensory data for subsequent usage in reasoning, and (ii) the planning stage that identifies the path between a starting and a goal position within its environment on the basis of the knowledge base on the environment and information from the perception stage. A mobile robot reasons places and moves to goal using ambiguous information and ambiguous knowledge through ‘perception’ and ‘planning’. We provide computer simulation results for a mobile robot in order to show the validity of the proposed algorithm.

Optimal Traffic Information (최적교통정보)

  • Hong, You-Sik;Park, Jong-Kug
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.76-84
    • /
    • 2003
  • Now days, It is based on GIS and GPS, it can search for the shortest path and estimation of arrival time by using the internet and cell phone to driver. But, even though good car navigation system does not create which is the shortest path when there average vehicle speed is 10 -20 Km. Therefore In order to reduce vehicle waiting time and average vehicle speed, we suggest optimal green time algorithm using fuzzy adaptive control, where there are different traffic intersection length and lane. In this paper, it will be able to forecast the optimal traffic information, estimation of destination arrival time, under construction road, and dangerous road using internet.

Design error corrector of binary data in holographic dnta storage system using fuzzy rules (근접 픽셀 에러 감소를 위한 홀로그래픽 데이터 스토리지 시스템의 퍼지 규칙 생성)

  • Kim Jang-hyun;Kim Sang-hoon;Yang Hyun-seok;Park Jin-bae;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.129-133
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time. Today any data storage system cannot satisfy these conditions, however holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System can be constructed without mechanical actuating part therefore fast data transfer rate and high storage capacity about $1Tb/cm^3$ can be realized. In this paper, to reduce errors of binary data stored in holographic data storage system, a new method for bit error reduction is suggested. First, find cluster centers using subtractive clustering algorithm then reduce intensities of pixels around cluster centers and fuzzy rules. Therefore, By using this error reduction method following results are obtained ; the effect of Inter Pixel Interference noise is decreased and the intensity profile of data page becomes uniform therefore the better data storage system can be constructed.

  • PDF

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

An Automated Planning Method for Autonomous Behaviors of Computer Generated Forces in War games (워게임에서 가상군의 자율적 행위를 위한 자동계획 기법)

  • Choi, Dae-Hoe;Cho, Jun-Ho;Kim, Ik-Hyun;Park, Jung-Chan;Jung, Sung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.11-18
    • /
    • 2011
  • This paper proposes a novel planning method for computer generated forces (CGFs) in war games that plans the behaviors of CGFs according to a given mission and situations. CGFs which are received their missions first plan their tasks for accomplishing the mission and then plan their behaviors for accomplishing each task. After that, they execute their planned behaviors considering the conditions of environments (in other words situations). The tasks and behaviors are hierarchically composed and include start conditions for beginning those and termination conditions for stopping those. CGFs first check whether the start condition of the planned behavior for accomplishing a task is satisfied or not in some degree and perform the behavior if satisfied continuously until the termination condition of the behavior will be met. If the termination condition is satisfied, then they check the start condition of the next planned behavior. This process will be repeated for accomplishing the mission. If the situations of CGFs are different by changing the environments from those of planning time, it may cause the start condition of the planned behavior to be dissatisfied. In this case, CGFs can decide a new behavior using fuzzy rule base. We realized our planning system and tested CGFs with a scenario. Experimental results showed that our system worked well and actively coped with situation changes. It will be possible to make CGFs that can do more autonomous behaviors if we continually develop our method.