• Title/Summary/Keyword: 퍼지 모델링

Search Result 383, Processing Time 0.021 seconds

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

Fuzzy modelling for design of ship's autopilot (선박 자동조타기 설계를 위한 퍼지모델링)

  • Ahn, Jong-Kap;Lee, Chang-Ho;Lee, Yun-Hyung;Son, Jung-Ki;Lee, Soo-Lyong;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The T-S fuzzy model of a ship is made from the nonlinear extension of Nomoto's 2nd-order model as the previous step before designing of the fuzzy type autopilot to consider the design specifications and the economic efficiency. The T-S fuzzy model is considered as a design variable of the heading angular velocity of ship. The linear models will be combined as "IF-THEN" fuzzy rules after get in this one area of the linear model(sub-system) by change of the heading angular velocity of a ship. The dynamic characteristic of a ship with the parameters of linear models and fuzzy membership functions are estimated to match by using the model adjustment technic with input/output data and a RCGA.

A Control of Inverted pendulum Using Genetic-Fuzzy Logic (유전자-퍼지 논리를 사용한 도립진자의 제어)

  • 이상훈;박세준;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.977-984
    • /
    • 2001
  • In this paper, Genetic-Fuzzy Algorithm for Inverted Pendulum is presented. This Algorithms is combine Fuzzy logic with the Genetic Algorithm. The Fuzzy Logic Controller is only designed to two inputs and one output. After Fuzzy control rules are determined, Genetic Algorithm is applied to tune the membership functions of these rules. To measure of performance of the designed Genetic-Fuzzy controller, Computer simulation is applied to Inverted Pendulum system. In the simulation, In the case of f[0.3, 0.3] Fuzzy controller is measured that maximum undershoot is $-5.0 \times 10^{-2}[rad]$, maximum undershoot is $3.92\times10^{-2}[rad]$ individually however, Designed algorithm is zero. The Steady state time is approximated that Fuzzy controller is 2.12[sec] and designed algorithm is 1.32[sec]. The result of simulation, Resigned algorithm is showed it's efficient and effectiveness for Inverted Pendulum system.

  • PDF

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

Fuzzy Neural System Modeling using Fuzzy Entropy (퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링)

  • 박인규
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.201-208
    • /
    • 2000
  • In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

  • PDF

Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function (사다리꼴형 함수의 입력 공간분할에 의한 가스로공정의 특성분석)

  • Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2014
  • Fuzzy modeling is generally using the given data and the fuzzy rules are established by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is presented by selection of the input variables, the number of space division and membership functions and in this paper the consequent part of the fuzzy rule is identified by polynomial functions in the form of linear inference and modified quadratic. Parameter identification in the premise part devides input space Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. In this paper, membership function of the premise part is dividing input space by using trapezoid-type membership function and by using gas furnace process which is widely used in nonlinear process we evaluate the performance.

A Study on Prediction of Wake Distribution by Neuro-Fuzzy System (뉴로퍼지시스템에 의한 반류분포 추정에 관한 연구)

  • Shin, Sung-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Wake distribution data of stem flow fields have been accumulated systematically by model tests. If the correlation between geometrical hull information and wake distribution is grasped through the accumulated data, this correlation can be helpful to designing similar ships. In this paper, Neuro-Fuzzy system that is emerging as a new knowledge over a wide range of fields nowadays is tried to estimate the wake distribution on the propeller plan. Neuro-Fuzzy system is well known as one of prospective and representative analysis method for prediction, classification, diagnosis of real complicated world problem, and it is widely applied even in the engineering fields. For this study three-dimensional stern hull forms and nominal wake values from a model test ate structured as processing elements of input and output layer, respectively. The proposed method is proved as an useful technique in ship design by comparing measured wake distribution with predicted wake distribution.

Color-based Emotion Analysis Using Fuzzy Logic (퍼지 논리를 이용한 색채 기반 감성 분석)

  • Woo, Young-Woon;Kim, Chang-Kyu;Kim, Chee-Yong
    • Journal of Digital Contents Society
    • /
    • v.9 no.2
    • /
    • pp.245-250
    • /
    • 2008
  • Psychology of color is a research field of psychology for studying human's behavior connected with color. Color carries symbolism and image while sharing psychological consensus with human. Each color has a respective image such as hope, passion, love, life, death, and so on. Peculiar stimuli by colors on these images have great influence on human's emotion and psychology. We therefore proposed a method for understanding human's state of emotion based on colors in this paper. In order to understand human's state of emotion, we analyzed color information used to model a room by a user and then described frequencies of each color as percent using fuzzy inference rules by membership values of fuzzy membership functions for colors used for modeling the room. When we applied the proposed color-based emotion analysis method to emotional state based on colors of Alschuler and Hattwick, we could see the proposed method is efficient.

  • PDF

Indoor Location Estimation and Navigation of Mobile Robots Based on Wireless Sensor Network and Fuzzy Modeling (무선 센서 네트워크와 퍼지모델을 이용한 이동로봇의 실내 위치인식과 주행)

  • Kim, Hyun-Jong;Kang, Guen-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Navigation system based on indoor location estimation is one of the core technologies in mobile robot systems. Wireless sensor network has great potential in the indoor location estimation due to its characteristics such as low power consumption, low cost, and simplicity. In this paper we present an algorithm to estimate the indoor location of mobile robot based on wireless sensor network and fuzzy modeling. ZigBee-based sensor network usually uses RSSI(Received Signal Strength Indication) values to measure the distance between two sensor nodes, which are affected by signal distortion, reflection, channel fading, and path loss. Therefore we need a proper correction method to obtain accurate distance information with RSSI. We develop the fuzzy distance models based on RSSI values and an efficient algorithm to estimate the robot location which applies to the navigation algorithm incorporating the time-varying data of environmental conditions which are received from the wireless sensor network.

LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems (LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석)

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.582-589
    • /
    • 2003
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included Un the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.