• Title/Summary/Keyword: 퍼지 규칙 벡터

Search Result 21, Processing Time 0.024 seconds

Word Boundary Detection of Voice Signal Using Recurrent Fuzzy Associative Memory (순환 퍼지연상기억장치를 이용한 음성경계 추출)

  • 마창수;김계영;최형일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.235-237
    • /
    • 2003
  • 본 논문에서는 음성인식을 위한 전처리 단계로 음성인식의 대상을 찾아내는 음성경계 추출에 대하여 기술한다. 음성경계 추출을 위한 특징 벡터로는 시간 정보인 RMS와 주파수 정보인 MFBE를 사용한다. 사용하는 알고리즘은 학습을 통해 규칙을 생성하는 퍼지연상기억장치에 음성의 시간 정보를 적용하기 위해 순환노드를 추가한 새로운 형태의 순환 퍼지연상기억장치를 제안한다.

  • PDF

Speaker-Adaptive Speech Synthesis based on Fuzzy Vector Quantizer Mapping and Neural Networks (퍼지 벡터 양자화기 사상화와 신경망에 의한 화자적응 음성합성)

  • Lee, Jin-Yi;Lee, Gwang-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.149-160
    • /
    • 1997
  • This paper is concerned with the problem of speaker-adaptive speech synthes is method using a mapped codebook designed by fuzzy mapping on FLVQ (Fuzzy Learning Vector Quantization). The FLVQ is used to design both input and reference speaker's codebook. This algorithm is incorporated fuzzy membership function into the LVQ(learning vector quantization) networks. Unlike the LVQ algorithm, this algorithm minimizes the network output errors which are the differences of clas s membership target and actual membership values, and results to minimize the distances between training patterns and competing neurons. Speaker Adaptation in speech synthesis is performed as follow;input speaker's codebook is mapped a reference speaker's codebook in fuzzy concepts. The Fuzzy VQ mapping replaces a codevector preserving its fuzzy membership function. The codevector correspondence histogram is obtained by accumulating the vector correspondence along the DTW optimal path. We use the Fuzzy VQ mapping to design a mapped codebook. The mapped codebook is defined as a linear combination of reference speaker's vectors using each fuzzy histogram as a weighting function with membership values. In adaptive-speech synthesis stage, input speech is fuzzy vector-quantized by the mapped codcbook, and then FCM arithmetic is used to synthesize speech adapted to input speaker. The speaker adaption experiments are carried out using speech of males in their thirties as input speaker's speech, and a female in her twenties as reference speaker's speech. Speeches used in experiments are sentences /anyoung hasim nika/ and /good morning/. As a results of experiments, we obtained a synthesized speech adapted to input speaker.

  • PDF

Design on Fult Diagnosis System based on Dynamic Fuzzy Model (동적포지모델기반 고장진단 시스템의 설계)

  • 배상욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2000
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the unknown nonlinear system, which can detect and isolate process faults continuously over all ranges of operating condition. The dynamic behavior of a nonlinear process is represented by a set of local linear models. The parameters of the DFM are identified by an on-line methods. The residual vector of the FDI system is consisted of the parameter deviations from nominal model and the set of grade of membership values indicating the operating condition of the nonlinear process. The detection and isolation of faults are performed via a neural network classifier that are learned the relationship between the residual vector and fault type. We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

A Study on Number Setting of Competitive Layer using fuzzy Control Method for Enhanced Counterpropagation Algorithm (개선된 Counterpropagation 알고리즘에서 퍼지 제어 기법을 이용한 경쟁층의 수 설정에 관한 연구)

  • Kim, Tae-Hyung;Cho, Jae-Hyun;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.359-365
    • /
    • 2008
  • CP(Counterpropagation)알고리즘은 서로 다른 두 개의 신경망이 하나로 결합 된 혼합형 모델로서, 다른 신경망 모델에 비해 비교적 단순하고 빠른 학습 속도를 보인다. 그러나 CP 알고리즘은 다양한 패턴이 입력되면 충분한 경쟁층의 수가 설정되지 않아 학습이 불안정하고, 출력층에서 연결강도를 조정할 때 일반적인 학습률 조정방법으로 불안정한 학습 결과를 보인다. 이러한 문제점을 해결하기 위해 다수의 경쟁층을 설정하여 경쟁층에서 패턴 분류의 정확성을 높이고, 입력 벡터와 승자 뉴런의 대표 벡터간의 차이와 승자 빈도수를 반영하여 학습률을 동적으로 조정하여 경쟁층에서의 학습이 안정적으로 진행되도록 하고, 출력층에서 연결강도를 조정할 때 모멘텀(momentum)학습법을 적용한 개선된 CP 알고리즘이 제안되었다. 본 논문에서는 개선된 CP 알고리즘에서 경쟁층의 수를 효율적으로 설정하기 위해 퍼지 제어 기법을 이용하여 경쟁층의 수를 결정하는 방법을 제안한다. 제안된 방법은 CP 알고리즘에 입력되는 패턴의 정보를 이용하여 퍼지 소속 함수를 설계하고 입력에 대한 소속도를 계산한 후, 퍼지 제어 규칙을 적용하고, Mamdani의 Min_Max 추론 방법으로 추론한다. 퍼지 추론을 통해 최종적으로 얻어진 값을 무게 중심법으로 비퍼지화 하여 최종적으로 개선된 CP 알고리즘의 경쟁층의 수를 결정하는데 적용한다. 제안된 방법의 학습 및 인식 성능을 평가하기 위해, 숫자, 영어 등과 같이 다양한 패턴을 실험에 적용한 결과, 제안된 방법이 경쟁층의 수를 결정하는데 효과적임을 확인할 수 있었다.

  • PDF

Reading Children's Mind from Digital Drawings based on Dominant Color Analysis using ART2 Clustering and Fuzzy Logic (ART2 군집화와 퍼지 논리를 이용한 디지털 그림의 색채 주조색 분석에 의한 아동 심리 분석)

  • Kim, Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1203-1208
    • /
    • 2016
  • For young children who are not spontaneous or not accurate in verbal communication of their emotions and experiences, drawing is a good means of expressing their status in mind and thus drawing analysis with chromatics is a traditional tool for art therapy. Recently, children enjoy digital drawing via painting tools thus there is a growing needs to develop an automatic digital drawing analysis tool based on chromatics and art therapy theory. In this paper, we propose such an analyzing tool based on dominant color analysis. Technically, we use ART2 clustering and fuzzy logic to understand the fuzziness of subjects' status of mind expressed in their digital drawings. The frequency of color usage is fuzzified with respect to the membership functions. After applying fuzzy logic to this fuzzified central vector, we determine the dominant color and supporting colors from the digital drawings and children's status of mind is then analyzed according to the color-personality relationships based on Alschuler and Hattwick's historical researches.

Discriminant analysis based on a calibration model (Calibration 모형을 이용한 판별분석)

  • 이석훈;박래현;복혜영
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.261-274
    • /
    • 1997
  • Most of the data sets to which the conventional discriminant rules have been applied contain only those which belong to one and only one class among the classes of interest. However the extension of the bivalence to multivlaence like Fuzzy concepts strongly influence the traditional view that an object must belong to only class. Thus the goal of this paper is to develop new discriminant rules which can handle the data each object of which may belong to moer than two classes with certain degrees of belongings. A calibration model is used for the relationship between the feature vector of an object and the degree of belongings and a Bayesian inference is made with the Metropolis algorithm on the degree of belongings when a feature vector of an object whose membership is unknown is given. An evalution criterion is suggested for the rules developed in this paper and comparision study is carried using two training data sets.

  • PDF

Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기를 이용한 유도전동기의 속도제어)

  • 박영민;김덕헌;김연충;김재문;원충연
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.173-183
    • /
    • 1998
  • In this paper, an auto-tuning method for fuzzy controller's membership functions based on the neural network is presented. The neural network emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and the reformed fuzzy controller uses for speed control of induction motor. Thus, in the case of motor parameter variation, the proposed method is superior to a conventional method in the respect of operation time and system performance. 32bit micro-processor DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzzy control algorithm. Through computer simulation and experimental results, it is confirmed that the proposed method can provide more improved control performance than that PI controller and conventional fuzzy controller.

  • PDF

A Design of Parameter Self Tuning Fuzzy Controller to Improve Power System Stabilization with SVC System (SVC계통의 안정도 향상을 위한 파라미터 자기조정 퍼지제어기의 설계)

  • Joo, Sok-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Static VAR Compensator(SVC) using a self tuning fuzzy controller for a synchronous generator excitation and SVC system. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method.

Designed of Intelligent Solar Tracking System using Fuzzy State-Space Partitioning Method (퍼지 상태 공간 분할 기법을 이용한 지능형 태양광 추적시스템 설계)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2072-2078
    • /
    • 2011
  • In photovoltaic(PV) system, for obtaining maximum efficiency of solar power systems, the solar tracking system must be controlled to match position of the sun. In this paper, we design the solar tracking system to track movement of the sun using CdS sensor modules and to determine direction of the sun under shadow of directions. In addition, for an intelligent computation in tracking of the sun, a fuzzy controller is allocated to space avaliable for splitting area of fuzzy part for the fuzzy input space(grid-type fuzzy partition) in which a fuzzy grid partition divides fuzzy rules bases. As well, a simple model of solar tracking system is designed by two-axis motor control systems and the 8-direction sensor module that can measure shadow from CdS sensor modules by matching of axis of CdS modules and PV panels. We demonstrate this systems is effective for fixed location and moving vessels and our fuzzy controller can track the satisfactorily.

Path Planning and Obstacle Avoidance for Mobile Robot with Vision System Using Fuzzy Rules (비전과 퍼지 규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;채양범;이원창;강근택
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.470-476
    • /
    • 2001
  • This paper presents a new algorithm of path planning and obstacle avoidance for autonomous mobile robots with vision system that is working in unknown environments. Distance variation technique is used in path planning to approach the target and avoid obstacles in work space as well . In this approach, the Sobel operator is employed to detect edges of obstacles and the distances between the mobile robot and the obstacles are measured. Fuzzy rules are used for trajectory planning and obstacle avoidance to improve the autonomy of mobile robots. It is shown by computer simulation that the proposed algorithm is superior to the vector field approach which sometimes traps the mobile robot into some local obstacles. An autonomous mobile robot with single vision is developed for experiments. We also show that the developed mobile robot with the proposed algorithm is navigating very well in complex unknown environments.

  • PDF