• Title/Summary/Keyword: 퍼지 가중치 평균

Search Result 25, Processing Time 0.024 seconds

Weight Adjustment Methods Based on Statistical Information for Fuzzy Weighted Mean Classifiers (퍼지 가중치 평균 분류기를 위한 통계적 정보 기반의 가중치 설정 방안)

  • Shin, Sang-Ho;Cho, Jae-Hyun;Woo, Young-Woon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.25-30
    • /
    • 2009
  • 패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 가중치 평균 분류기는 가중치를 적절히 설정함으로써 뛰어난 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 가중치는 인식 문제 분야의 특성이나 해당 전문가의 지식이나 주관적 경험을 기반으로 설정되므로 설정된 가중치의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 가중치 평균 분류기의 가중치를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 가중치 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터들 중의 하나인 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

  • PDF

Proposal of Weight Adjustment Methods Using Statistical Information in Fuzzy Weighted Mean Classifiers (퍼지 가중치 평균 분류기에서 통계 정보를 활용한 가중치 설정 기법의 제안)

  • Woo, Young-Woon;Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.9-15
    • /
    • 2009
  • The fuzzy weighted mean classifier is one of the most common classification models and could achieve high performance by adjusting the weights. However, the weights were generally decided based on the experience of experts, which made the resulting classifiers to suffer the lack of consistency and objectivity. To resolve this problem, in this paper, a weight deciding method based on the statistics of the data is introduced, which ensures the learned classifiers to be consistent and objective. To investigate the effectiveness of the proposed methods, Iris data set available from UCI machine learning repository is used and promising results are obtained.

Aggregation of Decision Inputs with OWA(Ordered Weighted Averaging) Operators and Application to the Location Analysis of Anchorage Area (OWA를 이용한 의사전략 결합과 대기정박지 입지분석 문제 적용연구)

  • O, Se-Ung;Seo, Gi-Yeol;Park, Jong-Min;Seo, Sang-Hyeon;Park, Gye-Gak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.265-268
    • /
    • 2007
  • 다기준 의사결정 문제에서 요인간의 가중치 계산과 계산된 요인의 평가값 종합화는 매우 중요하다. 본 연구는 다기준 의사결정 문제에 있어서 의사결정자의 의사전략 결합기법을 도출하고 다기준의사결정 문제로 적용하였다. 복잡한 환경에서 의사결정을 할 때 발생되는 모호함을 해결하기 위해 주관적 의견을 결합한 퍼지지합 이론을, 다기준 문제의 요인을 퍼지값으로 계층화하기 위해 계층분석법을 적용하였다. 또한, 의사결정자의 의사전략을 결합하기 위해 순위 가중치평균법을 이용하였다. 순위가 있는 가중치 평균방법은 퍼지집합의 orness 특성을 이용하여 의사결정자의 주관적 의지를 반영할 수 있는 기법으로, 순위가중치평균(OWA) 연산자에 따른 낙관적 혹은 비관적인 정도에 따라 주관적인 의도를 반영할 수 있는 방법이다. 다기준의사결정 문제의 적용사례로서 해상교통안전을 위한 대기정박지의 위치분석 문제를 본 연구에서 제시한 방법에 따라 적용하였다.

  • PDF

Face Recognition Using PCA and Fuzzy Weighted Average Method (PCA와 퍼지 가중치 평균 기법을 이용한 얼굴 인식)

  • Woo, Young-Woon;Kim, Hyung-Soo;Park, Jae-Min;Cho, Jae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.315-316
    • /
    • 2011
  • 일반적으로 영상에서 얼굴 영상을 검출하고 인식하는 알고리즘은 패턴 인식 연구에 있어서 인간과 컴퓨터의 상호작용의 연구라는 면에서 아주 중요한 문제로 연구되어 왔다. 본 논문에서는 고유얼굴을 이용하여 유클리디언 거리법과 퍼지기법의 인식률을 비교해보고자 한다. PCA(Principal Component Analysis) 방식은 우수한 인식 결과를 보장하는 얼굴인식 기법중의 하나이며, 얼굴 영상을 이용하여 공분산 행렬을 계산하고, 공분산 행렬을 통해 생성된 저차원의 벡터, 즉 고유얼굴(Eigenface)을 이용하여 가중치를 계산하고, 이 가중치를 기준으로 인식을 수행하는 기법이다. 이를 기반으로 하여, 본 논문에서는 전처리 과정, 고유얼굴 과정, 유클리디언 거리법 및 퍼지 소속도 함수 설계 과정, 신경망 학습과정, 인식과정으로 구성된 5단계의 얼굴 인식 알고리즘을 제안한다.

  • PDF

Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average (퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계)

  • Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.508-514
    • /
    • 2021
  • In this paper, to propose a classifier based on supervised learning, three types of fuzzy membership functions that determine the membership of each feature of classification data are proposed. In addition, the possibility of improving the classifier performance was suggested by using the average value calculation method used in the process of deriving the classification result using the average value of the membership degrees for each feature, not by using a simple arithmetic average, but by using a weighted average using various weights. To experiment with the proposed methods, three standard data sets were used: Iris, Ecoli, and Yeast. As a result of the experiment, it was confirmed that evenly excellent classification performance can be obtained for data sets of different characteristics. It was confirmed that better classification performance is possible through improvement of fuzzy membership functions and the weighted average methods.

A Study on Off-Line Signature Verification using Directional Density Function and Weighted Fuzzy Classifier (가중치 퍼지분류기와 방향성 밀도함수를 이용한 오프라인 서명 검증에 관한 연구)

  • 한수환;이종극
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.6
    • /
    • pp.592-603
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional $5\times{5}$ gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether it is genuine or forged with more than 98% overall accuracy even without any knowledge of varied freehand forgeries.

  • PDF

Insect Footprint Recognition Using Trace Transform and Fuzzy Weighted Mean (Trace 변환과 퍼지 가중치 평균을 이용한 곤충 발자국 인식)

  • Shin, Bok-Suk;Kim, Kwang-Baek;Woo, Young-Woon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.143-147
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 인식하기 위해, Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하는 기법을 제안한다. Trace 변환을 이용하면 패턴의 이동, 회전, 반사에 불변하는 특징값을 얻을 수 있다. 이러한 특징값들은 곤충 발자국과 같이 다양한 변형이 존재하는 패턴을 인식하는 데에 적합하다. 이 방법은 특징값을 추출하기 위해서 병렬로 표현되는 trace-line을 따라 특징들을 일차적으로 도출하고, 또 다시 도출된 특징들은 diametric, circus 단계의 함수를 거치면서 새로운 특징값으로 재구성된다. 곤충의 발자국 패턴을 이용하여 실험한 결과 곤충 발자국의 이동, 회전 반사에 관계없이 동일한 특징값이 추출됨을 확인할 수 있고, 곤충발자국의 고유한 패턴을 찾아 인식하기 위해서 추출된 특징값들은 퍼지 가중치 평균을 이용하여 인식 실험을 수행하고 그 결과를 제시하였다.

  • PDF

Aggregation of Decision Inputs with Ordered Weighted Averaging Operators and Application to the Multiple Criteria Decision Making Problems (순위가중치평균법에 의한 의사전략 결합 및 다기준의사결정 문제로의 적용)

  • Oh, Se-Woong;Park, Jong-Min;Yang, Young-Hoon;Seo, Ki-Yoel;Lee, Cheol-Young;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.537-543
    • /
    • 2007
  • It's an important part to calculate the weights between criterions and to aggregate the decision inputs in a MCDM(Multi criterion decision making) This paper presents a method for aggregation cf decision inputs and application to the MCDM. We incorporate the fuzzy set theory and the basic nature of subjectivity due to ambiguity to achieve a flexible decision approach suitable for uncertain and fuzzy environments. To obtain the scoring that corresponds to the best alternative or the ranking of the alternatives, we need to use a total order for the fuzzy numbers involved in the problem. In this article, we consider a definition of such a total order, which is based on two subjective aspects: the degree of optimism/pessimism reflected with the ordered weighted averaging(OWA) oprators. A numerical example, expecially location analysis for anchorage area, is given to illustrate the approach.

Deduction of Attributes' Weight for Companies' Job Creation by Applying Fuzzy Decision Making Analysis (퍼지 다기준 의사결정법을 이용한 기업의 일자리 창출 평가지표의 가중치 도출)

  • Kwak, Seung-Jun;Lee, Joo-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7971-7977
    • /
    • 2015
  • This paper attempts to select the attributes of job creation and to rank them for evaluation of companies' job creation. And the results of this paper are expected to provide the information for the polices of job creation. In doing so, this paper applies fuzzy decision making analysis that reflects ambiguity and uncertainty in decision-making process. According to the results, the weight of quality of employment is similar with that of quantity of employment. In addition, annual employment growth rate, annual net employment are ranked as first and the percentage of irregular employment, the average length of employment of all workers, average monthly wages of all workers, and employment growth over sales growth rate are next ranked.

An Optimal COG Defuzzifier Design Using Lamarckian Co-adaptation (라마키안 상호 적응에 의한 최적 COG 비퍼지화기 설계)

  • 김대진;이한별
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.390-396
    • /
    • 1998
  • 본 논문은 퍼지 논리 제어기(FLC)의 근사화 능력과 제어 성능을 동시에 향상시키는 정확한 무게 중심(Center Of Gravity; COG) 비퍼지화기를 제안한다. 본 논문은 비퍼지화 과정이 최적 선택의 한 과정이며 비퍼지화 방법의 적절한 선택이다. 제안한 COG 비퍼지화기의 정확성은 출력 소속 함수를 여러 개의 설계 파라메터(중신, 폭, 변경자(modifier))로 나타내고 이들 설계 파라메터들을 학습과 진화의 Lamarckian 상호 적응에 의하여 갱신함으로써 얻어진다. 이러한 학습과 진화의 상호 적응은 학습하지 않는 경우 보다 빠르게 최적 COG 비퍼지화기를 얻도록 하며, 보다 넓은 범위의 탐색으로최적해를 찾을 가능성을 높여 준다. 제안한 설계 방법은 목적 함수의 가중치를 조절하여 높은 근사화 능력, 높은 제어 성능, 또는 이들간의 균형된 성능을 갖는 다양한 특정 응용형(Application-specific)COG 비퍼지화기를 제공한다. 제안한 상호적응 COG 비퍼지화기의 설계방법을 트럭 후진 주차 제어 문제에 적용하여, 각각 시스템 오차와 평균 추적 거리로 나타내어진 근사화 능력과 제어 성능을 기존의 COG 비퍼지화기와 비교한다.

  • PDF