Weight Adjustment Methods Based on Statistical Information for Fuzzy Weighted Mean Classifiers

퍼지 가중치 평균 분류기를 위한 통계적 정보 기반의 가중치 설정 방안

  • Shin, Sang-Ho (Dept. of Digital Media Engineering, Dong-Eui University) ;
  • Cho, Jae-Hyun (Dept. of Computer Engineering, Catholic University of Pusan) ;
  • Woo, Young-Woon (Dept. of Multimedia Engineering, Dong-Eui University)
  • 신상호 (동의대학교 디지털미디어공학과) ;
  • 조재현 (부산가톨릭대학교 컴퓨터공학과) ;
  • 우영운 (동의대학교 멀티미디어공학과)
  • Published : 2009.01.08

Abstract

패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 가중치 평균 분류기는 가중치를 적절히 설정함으로써 뛰어난 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 가중치는 인식 문제 분야의 특성이나 해당 전문가의 지식이나 주관적 경험을 기반으로 설정되므로 설정된 가중치의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 가중치 평균 분류기의 가중치를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 가중치 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터들 중의 하나인 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

Keywords