• Title/Summary/Keyword: 퍼지표현

Search Result 442, Processing Time 0.024 seconds

The Traffic Signal control System Applying Fuzzy Reasoning (퍼지추론을 적용한 교통 신호 제어 시스템)

  • Kim, Mi-Gyeong;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.977-987
    • /
    • 1999
  • The current traffic signal control systems are operated depending on the pre-planned control scheme or the selected control scheme according to a period of time. The problem with these types of traffic control systems is that they can not cope with variant traffic flows appropriately. Such a problem can be difficult to solve by using binary logic. Therefore, in this 0paper, we propose a traffic signal control system which can deal wit various traffic flows quickly and effectively. The proposed controller is operated under uncertainty and in a fuzzy environment. It show the congestion of road traffic by using fuzzy logic, and it determines the length of green signal by means of a fuzzy inference engine. It modeled using petri-net to verify its validation.

  • PDF

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method (DNA 코딩 기법을 이용한 웨이브렛 기반 퍼지 모델링)

  • Joo, Young-Hoon;Lee, Yeun-Woo;Yu, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.737-742
    • /
    • 2003
  • In this paper, we propose a new wavelet-based fuzzy modeling using a DNA coding method. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic information based on the biological DNA. The proposed method makes a fuzzy model by using the wavelet transform, in which coefficients are identified by the DNA coding method. Thus we can effectively get the fuzzy model of nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with the GA.

Fuzzy Inference Engine for Ontology-based Expert Systems (온톨로지 기반의 전문가 시스템 구축을 위한 퍼지 추론 엔진)

  • Choi, Sang-Kyoon;Kim, Jae-Saeng
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.45-52
    • /
    • 2009
  • Recently, we started a project development of the digital expert system for the product design supporting in manufacturing industry. This digital expert system is used to the engineers in manufacturing industry for the process control, production management and system management. In this paper, we develop the ontology based inference engine shell for building of expert system. This expert system shell included a various functions which of Korean language supporting, graphical ontology map modeling interface, fuzzy rule definition function and etc. And, we introduce the knowledge representation method for the ontology map building and ontology based fuzzy inferencing method.

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Evaluation of the Probability of Failure in Rock Slope Using Fuzzy Reliability Analysis (퍼지신뢰도(fuzzy reliability) 해석기법을 이용한 암반사면의 파괴확률 산정)

  • Park, Hyuck-Jin
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.763-771
    • /
    • 2008
  • Uncertainties are pervasive in engineering geological problems. Therefore, the presence of uncertainties and their significance in analysis and design of slopes have been recognized. Since the uncertainties cannot be taken into account by the conventional deterministic approaches in slope stability analysis, the probabilistic analysis has been considered as the primary tool for representing uncertainties in mathematical models. However, some uncertainties are caused by incomplete information due to lack of information, and those uncertainties cannot be handled appropriately by the probabilistic approach. For those uncertainties, the theory of fuzzy sets is more appropriate. Therefore, in this study, fuzzy reliability analysis has been proposed in order to deal with the uncertainties which cannot be quantified in the probabilistic analysis due to the limited information. For the practical example, a slope is selected in this study and both the probabilistic analysis and the fuzzy reliability analysis have been carried out for planar failure. In the fuzzy reliability analysis, the dip angle and internal friction angle of discontinuity are considered as triangular fuzzy numbers since the random properties of the variables cannot be obtained completely under the conditions of limited information. In the study, the fuzzy reliability index and the probabilities of failure are evaluated from fuzzy arithmetic and compared to those from the probabilistic approach using Monte Carlo simulation and point estimate method. The analysis results show that the fuzzy reliability analysis is more appropriate for the condition that the uncertainties arise due to incomplete information.

Fuzzy reasoning for assessing bulk tank milk quality (Bulk tank milk의 품질평가를 위한 퍼지기반 추론)

  • Kim Taioun;Jung Daeyou;Jayarao Bhushan M.
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.3
    • /
    • pp.39-57
    • /
    • 2004
  • Many dairy producers periodically receive information about their bulk tank milk with reference to bulk tank somatic cell counts, standard plate counts, and preliminary incubation counts. This information, when collected over a period of time, in combination with bulk tank mastitis culture reports can become a significant knowledge base. Several guidelines have been proposed to interpret farm bulk tank milk bacterial counts. However many of the suggested interpretive criteria lack validation, and provide little insight to the interrelationship between different groups of bacteria found in bulk tank milk. Also the linguistic terms describing bulk tank milk quality or herd management status are rather vague or fuzzy such as excellent, good or unsatisfactory. The objective of this paper was to develop a set of fuzzy descriptors to evaluate bulk tank milk quality and herd's milking practice based on bulk tank milk microbiology test results. Thus, fuzzy logic based reasoning methodologies were developed based on fuzzy inference engine. Input parameters were bulk tank somatic cell counts, standard plate counts, preliminary incubation counts, laboratory pasteurization counts, non agalactiae-Streptococci and Streptococci like organisms, and Staphylococcus aureus. Based on the input data, bulk tank milk quality was classified as excellent, good, milk cooling problem, cleaning problem, environmental mastitis, or mixed with mastitis and cleaning problems. The results from fuzzy reasoning would provide a reference regarding a good management practice for milk producers, dairy health consultants, and veterinarians.

  • PDF

Effective Decentralized Sampled-Data Control for Nonlinear Systems in T-S' Form: Overlapping IDR Approach (타카기-수게노 형태의 비선형 시스템의 효율적 분산 샘플치 제어: 중복 지능형 디지털 재설계 접근법)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.94-99
    • /
    • 2012
  • This paper discusses a decentralized sampled-data control problem for large-scale nonlinear systems. The system is represented in Takagi-Sugeno's form. Next, we design a decentralized analog controller based on the overlapping decomposition technique. The final step is to apply the intelligent digital redesign scheme for converting the analog controller into the sampled-data one. Design condition is represented in terms of linear matrix inequalities. A simulation result is provided for the effectiveness of the proposed design method.

Fuzzy Cognitive Map-Based A, pp.oach to Causal Knowledge Base Construction and Bi-Directional Inference Method -A, pp.ications to Stock Market Analysis- (퍼지인식도에 기초한 인과관계 지식베이스 구축과 양방향 추론방식에 관한 연구 -주식시장 분석에의 적용을 중심으로-)

  • 이건창;주석진;김현수
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.1-22
    • /
    • 1995
  • 본 연구에서 퍼지인식도(Fuzzy Cognitive Map) 개념을 기초로 하여 (1) 특정 문제영역에 대한 전문가의 인과관계 지식(causal knowledge)을 추출하는 알고리즘을 제시하고, (2) 이 알고리즘에 기초하여 작성된 해당 문제영역에 대한 여러 전문가들의 인과관계 지식을 계층별로 분해하여, (3) 해당 계층간의 양방향 추론이 가능한 추론메카니즘을 제시하고자 한다. 특정 문제영역에 있어서의 인과관계 지식이란 해당 문제를 구성하는 여러 개념간에 존재하는 인과관계를 표현한 지식을 의미한다. 이러한 인과관계 지식은 기존의 IF-THEN 형태의 규칙과는 달리 행렬형태로 표현되기 때문에 수학적인 연산이 가능하다. 특정 문제영역에 대한 전문가의 인과관계 지식을 추출하는 알고리즘은 집합연산에 의거하여 개발되었으며, 특히 상반된 의견을 보이는 전문가들의 의견을 통합하여 하나의 통합된 인과관계 지식베이스를 구축하는데 유용하다. 그러나, 주어진 문제가 복잡하여 다양한 개념들이 수반되면, 자연히 인과관계 지식베이스의 규모도 커지게 되므로 이를 다루는데 비효율성이 개재되기 마련이다. 따라서 이러한 비효율성을 해소하기 위하여 주어진 문제를 여러계측(Hierarchy)으로 분해하여, 해당 계층별로 인과관계 지식베이스를 구축하고 각 계층별 인과관계 지식베이스를 연결하여 추론하는 메카니즘을 개발하면 효과적인 추론이 가능하다. 이러한 계층별 분해는 행렬의 분해와 같은 개념으로도 이해될 수 있다는 특징이 있어 그 연산이 간단명료하다는 장점이 있다. 이와같이 분해된 인과관계 지식베이스는 계층간의 추론메카니즘을 통하여 서로 연결된다. 이를 위하여 본 연구에서는 상향 또는 하향방식이 추론이 가능한 양방향 추론방식을 제시하여 주식시장에서의 투자분석 문제에 적용하여 그 효율성을 검증하였다.

  • PDF

Visualizing Fuzzy Set Based on Venn Diagram (벤 다이어그램 기반 퍼지 집합 시각화)

  • Park, Ye-Seul;Park, Jin-Ah
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.15-20
    • /
    • 2009
  • Much amount of data which demand fuzzy information system requires various analysis through the fuzzy set visualization. Therefore, this study proposes how to visualize fuzzy data set using variation of Venn diagram. For the fuzzy data which are related to many topics and have ranking of relation, this way gives results that users want by visualizing intersection, union and complementary set. That is, it visualizes the set of fuzzy data which have many topics at once, or the set of all fuzzy data which has topics, or the set of fuzzy data not related to a topic. Users control these sets by overlapping or piling them; visualized with Venn diagram, which is user-oriented. One distinct advantage of this visualization is the fact that it delivers web documents which users of search engine and web developers want much quickly. Furthermore, its possibility can be expanded to several purposes by using for information retrieval.

  • PDF

Fuzzy-based Threshold Controlling Method for ART1 Clustering in GPCR Classification (GPCR 분류에서 ART1 군집화를 위한 퍼지기반 임계값 제어 기법)

  • Cho, Kyu-Cheol;Ma, Yong-Beom;Lee, Jong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.167-175
    • /
    • 2007
  • Fuzzy logic is used to represent qualitative knowledge and provides interpretability to a controlling system model in bioinformatics. This paper focuses on a bioinformatics data classification which is an important bioinformatics application. This paper reviews the two traditional controlling system models The sequence-based threshold controller have problems of optimal range decision for threshold readjustment and long processing time for optimal threshold induction. And the binary-based threshold controller does not guarantee for early system stability in the GPCR data classification for optimal threshold induction. To solve these problems, we proposes a fuzzy-based threshold controller for ART1 clustering in GPCR classification. We implement the proposed method and measure processing time by changing an induction recognition success rate and a classification threshold value. And, we compares the proposed method with the sequence-based threshold controller and the binary-based threshold controller The fuzzy-based threshold controller continuously readjusts threshold values with membership function of the previous recognition success rate. The fuzzy-based threshold controller keeps system stability and improves classification system efficiency in GPCR classification.

  • PDF