• 제목/요약/키워드: 퍼지생성규칙

Search Result 186, Processing Time 0.026 seconds

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting: Reliability Computation (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 신뢰도 계산)

  • Shim, Hyun-Jeong;Park, Lae-Jeong;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.318-322
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측시스템에서 예측치별로 신뢰도를 계산하는 체계적인 방법을 제안한다. 예측시스템의 신뢰도를 추정하는 작업은 특히 신경회로망과 같은 경험적 모델을 실제 활용하기 위해서 필수적인 연구로 인식되고 있다. 본 논문에서 제안하는 출력별 신뢰 구간 계산 방법은 지역 표현하는 뉴로-퍼지 모델의 특성을 활용하여 학습된 퍼지 규칙 각각에 대해 신뢰도를 추정하는 Local reliability measure 기법을 사용한다. 제안된 신뢰도 계산이 가능한 단기 전력 수요 예측시스템은 먼저 결정 트리를 이용하여 초기 구조를 생성하고, 이를 초기 구조 뱅크에 저장한다. 저장된 초기 구조 뱅크를 이용하여 뉴로-퍼지 모델을 학습하고, 학습된 퍼지 규칙의 신뢰도를 추정한다. 제안된 시스템의 실효성을 검증하기 위해서 한국 전력에서 수집한 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 한 시간 앞의 수요를 예측하는 모의 실험을 수행하고 실험 결과를 비교 분석한다.

  • PDF

A Study on Optimal Identification of Fuzzy Polynomial Neural Networks Model Using Genetic Algorithms (유전자 알고리즘을 이용한 FPNN 모델의 최적 동정에 관한 연구)

  • 이인태;박호성;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.429-432
    • /
    • 2004
  • 본 논문은 기존의 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks ; FPNN) 모델을 이용하여 비선형성 데이터에 대한 추론을 제안한다. 복잡한 비선형 시스템의 모델동정을 위하여 생성된 GMDH 방법에 기초한 FPNN의 각 노드는 퍼지 규칙을 기반으로 구축되었으며, 층이 진행되는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. FPNN 각각의 활성노드를 퍼지다항식 뉴론(Fuzzy Polynomial Neuron ; FPN)이라고 표현한다. FPNN의 후반부 구조는 입출력 변수 사이 의 간략과 회귀다항식 (1차, 2차, 변형된 2차식) 함수에 의해 구현된다. 규칙의 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 또한 유전자 알고리즘을 사용하여 각노드의 부분표현식을 구성하는 입력변수의 수, 입력변수와 차수의 선택 동조를 통하여 최적의 Genetic Algorithms(GAs)을 이용한 FPNN모델을 설계하는 것이 유용하고 효과적임을 보인다.

  • PDF

Reasoning with Insufficient Input Facts in Production Systems - Petri Net Approach (생성시스템에서의 불충분한 사실로부터의 추론 - 페트리 넷을 사용한 접근)

  • Hong-Youl Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.30-32
    • /
    • 2008
  • 이 논문에서는 생성시스템 규칙 조건부의 일부만 입력 사실로 주어져도 행동부를 실행하여 유용한 결과를 제시할 수 있는 방법을 제안한다. 규칙 또는 페트리 넷의 변이(transition)의 격발(firing) 규칙을 개선하여 고안된 이 방법은 퍼지 추론이 추구하였지만 이루지 못한 불확실, 불충분한 조건을 통한 결론 도출이라는 과제의 매우 실용적인 해답이 될 것이다.

Nonlinear System Modeling Using Genetic Algorithm and FCM-basd Fuzzy System (유전알고리즘과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • 곽근창;이대종;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.491-499
    • /
    • 2001
  • In this paper, the scheme of an efficient fuzzy rule generation and fuzzy system construction using GA(genetic algorithm) and FCM(fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. In the structure identification, input data is transformed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, a set fuzzy rules are generated for a given criterion by FCM clustering algorithm . In the parameter identification premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this one can systematically obtain the valid number of fuzzy rules which shows satisfying performance for the given problem. Finally, we applied the proposed method to the Box-Jenkins data and rice taste data modeling problems and obtained a better performance than previous works.

  • PDF

Design of a Fuzzy Classifier by Repetitive Analyses of Multifeatures (다중 특징의 반복적 분석에 의한 퍼지 분류기의 설계)

  • 신대정;나승유
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.14-24
    • /
    • 1996
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation ation padptu sing genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusior~ or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to three examples of the classification of iris data, the discrimination of thyroid gland cancer cells and the recognition of confusing handwritten and printed numerals. In the recognition of confusing handwritten and printed numerals, each sample numeral is classified into one of the groups which are divided according to the sample structure. The fuzzy classifier proposed in this paper has recognition rates of 98. 67% for iris data, 98.25% for thyroid gland cancer cells and 96.3% for confusing handwritten and printed numeral!;.

  • PDF

Image Recognition by Fuzzy Logic and Genetic Algorithms (퍼지로직과 유전 알고리즘을 이용한 영상 인식)

  • Ryoo, Sang-Jin;Na, Chul-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.969-976
    • /
    • 2007
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation part using genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusion or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to two examples of the recognition of iris data and the recognition of Thyroid Gland cancer cells. The fuzzy classifier proposed in this paper has recognition rates of 98.67% for iris data and 98.25% for Thyroid Gland cancer cells.

Ontology-based Fuzzy Classifier for Pattern Classification (패턴분류를 위한 온톨로지 기반 퍼지 분류기)

  • Lee, In-K.;Son, Chang-S.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.814-820
    • /
    • 2008
  • Recently, researches on ontology-based pattern classification have been tried out in many fields. However, in most of the researches, the ontology which represents the knowledge about pattern classification is just referred during the processes of the pattern classification. In this paper, we propose ontology-based fuzzy classifier for pattern classification which is extended from the fuzzy rule-based classifier In order to realize the proposed classifier, we construct an ontology by conceptualizing the method of fuzzy rule-based pattern classification and generate ontology inference rules for pattern classification. Lastly, we show the validity o) the proposed classifier through the experiment of pattern classification on the Fisher's IRIS dataset.

A Fuzzy Rule-based System for Automatically Generating Customized Training Scenarios in Cyber Security

  • Nam, Su Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.39-45
    • /
    • 2020
  • Despite the increasing interest in cyber security in recent years, the emergence of new technologies has led to a shortage of professional personnel to efficiently perform the cyber security. Although various methods such as cyber rage are being used to cultivate cyber security experts, there are problems of limitation of virtual training system, scenario-based practice content development and operation, unit content-oriented development, and lack of consideration of learner level. In this paper, we develop a fuzzy rule-based user-customized training scenario automatic generation system for improving user's ability to respond to infringement. The proposed system creates and provides scenarios based on advanced persistent threats according to fuzzy rules. Thus, the proposed system can improve the trainee's ability to respond to the bed through the generated scenario.

Optimization of GA-based Advanced Self-Organizing Fuzzy Polynomial Neural Networks (GA 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크의 최적화)

  • 박호성;박건준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.288-291
    • /
    • 2004
  • 기존의 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. SOFPNN의 구조는 퍼지 다항식 뉴론(FPN)들로 구성되어 있으며, 층이 진행하는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. 그러나, 노드의 입력변수의 수와 규칙 후반부 다항식 차수 그리고 입력변수는 설계자의 경험 또는 반복적인 학습을 통해 선호된 네트워크 구조를 선택하였으나, 최적의 네트워크 구조를 구축하는데는 어려옴이 내재되어 있었다. 본 논문에서는 자기구성 퍼지 다항식 뉴럴네트워크(Self-Organizing Fuzzy Polynomial Neural Networks: SOFPNN)을 최적화시키기 위해 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 따라서 모델 구축에 있어서 유연성과 정확성을 가지며 객관적이고 좀 더 정확한 예측 능력을 가진 SOFPNN 모델 구조를 구축할 수가 있다.

  • PDF

Self-Organizing Fuzzy Modeling using Creation of Clusters (클러스터 생성을 이용한 자기구성 퍼지 모델링)

  • 고택범
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.245-251
    • /
    • 2002
  • 본 논문에서는 상대적으로 큰 퍼지 엔트로피를 갖는 입력-출력 데이터 집단에 다중 회귀 분석을 적용하여 다차원 평면 클러스터를 생성하고, 이 클러스터를 새로운 퍼지 모델의 규칙으로 추가한 후 퍼지 모델 파라미터의 개략 동조와 정밀 동조를 수행하는 자기구성 퍼지 모델링을 제안한다. Weighted recursive least squared 알고리즘과 fuzzy C-regression model 클러스터링에 의해 퍼지 모델의 파라미터를 개략적으로 동조한 후 gradient descent 알고리즘에 의해 파라미터를 정밀 동조하면서 감수분열 유전 알고리즘을 이용하여 최적의 학습률을 탐색한다. 그리고 자기 구성 퍼지 모델링 기법을 이용하여 Box-Jenkins의 가스로 데이터, 다변수비선형 정적 함수의 데이터와 하수 처리 활성오니 공정의 모델링을 수행하고, 기존의 방법에 의한 모델링 결과와 비교하여 그 성능을 입증한다.

  • PDF