Annual Conference on Human and Language Technology
/
1994.11a
/
pp.313-317
/
1994
본 연구에서는 인간과 컴퓨터 사이의 음성을 이용한 대화 시스템을 구현하였다. 특별히 음성을 인식하는데 있어서 단어추출(word apotting) 방법을 사용하는 경우에 알맞은 의미 분석 방법과 도표 형태의 규칙을 기반으로 하여 시스템의 응답을 생성하는 방법에 대하여 연구하였다. 단어추출 방법을 사용하여 음성을 인식하는 경우에는 형태소분석 및 구문분석의 과정을 이용하여 사용자의 발화 의도를 분석하기 어려우므로 새로운 의미분석 방법을 필요로 한다. 본 연구에서는 퍼지 관계를 사용하여 사용자의 발화 의도를 파악하는 새로운 의미분석 방법을 제안하였다. 그리고, 사용자의 발화 의도에 적절한 시스템의 응답을 만들고 응답의 내용을 효율적으로 관리하기 위한 방범으로 현재의 상태와 사용자의 의도에 따른 응답 규칙을 만들었다. 이 규칙은 도표의 형태로 구현되어 규칙의 갱신 및 확장을 편리하게 만들었다. 대화의 영역은 열차 예매에 관련된 예매, 취소, 문의 및 관광지 안내로 제안하였다. 음성의 오인식에 의한 오류에 적절히 대처하기 위해 시스템의 응답은 확인 및 수정 과정을 포함하고 있다. 본 시스템은 문자 입력과 음성 입력으로 각각 실험한 결과, 사용자는 시스템의 도움을 받아 자신이 의도하는 목적을 달성할 수 있었다.
Kim, Min-Soo;You, Chi-Hyoung;Lee, Hae-Soo;Chung, Chan-Soo
Proceedings of the KIEE Conference
/
2003.07d
/
pp.2750-2752
/
2003
흑점은 태양 표면에 검은 구멍처럼 보이는 것으로 흑점이 나타나면 태양활동이 활발함을 의미한다. 이러한 태양활동은 플레어나 홍염 등의 형태로 표출되어 지구의 자기장을 변동시킴으로써 전력, 통신 시스템의 장애를 유발하게 된다. 따라서 이러한 흑점 데이터를 예측함으로써 사전에 대비할 수 있도록 할 필요가 있다. 흑점 시계열 데이터의 예측에 사용된 시스템은 병렬구조를 갖는 퍼지시스템(PSFS)으로 각 퍼지시스템의 규칙은 주어진 입출력 데이터를 클러스터링하여 생성하였다. 특히, 흑점 시계열 데이터와 같이 주기성향을 갖는 테이터의 경우에도 적용가능하도륵 유연한 구조를 갖는 개선된 PSFS를 제안하여 그 성능을 검증하였다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.11
no.1
/
pp.125-132
/
2011
Fire monitoring system detects a fire based on the values of various sensors, such as smoke, CO, temperature, or change of temperature. It detects a fire by comparing sensed values with predefined threshold values for each sensor. However, to prevent a fire it is required to predict a situation which has a possibility of fire occurrence. In this work, we propose a fire recognition system using a fuzzy inference method. The rule base is constructed as a combination of fuzzy variables derived from various sensed values. In addition, in order to solve generalization and formalization problems of rule base construction from expert knowledge, we analyze features of fire patterns. The constructed rule base results in an improvement of the recognition accuracy. A fire possibility is predicted as one of 3 levels(normal, caution, danger). The training data of each level is converted to fuzzy rules by FCM(fuzzy C-means clustering) and those rules are used in the inference engine. The performance of the proposed approach is evaluated by using forest fire data from the UCI repository.
The appearance of Web has brought an substantial revolution to all fields of society such knowledge management and business transaction as well as traditional information retrieval. In this paper, we propose an EFASIT(Extended Fuzzy AHP and SImilarity Technology) model considering the emotion analysis. And we combine the Extended Fuzzy AHP Method(EFAM) with SImilarity Technology(SIT) based on the domain corpus information in order to efficiently retrieve the document on the Web. The proposed the EFASIT model can generate the more definite rule according to integration of fuzzy knowledge of various decision-maker, and can give a help to decision-making, and confirms through the experiment.
This paper presents an approach to classify normal and epilepsy from electroencephalogram(EEG) using a neural network with weighted fuzzy membership functions(NEWFM). To extract input features used in NEWFM, wavelet transform is used in the first step. In the second step, the frequency distribution of signal and the amount of changes in frequency distribution are used for extracting twenty-four numbers of input features from coefficients and approximations produced by wavelet transform in the previous step. NEWFM classifies normal and epilepsy using twenty four numbers of input features, and then the accuracy rate is 98%.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.771-773
/
2018
인공지능(AI), 사물인터넷(IoT)등의 4차 산업기술은 철도안전의 핵심수단으로 부상하고 있으며 차량, 위험관리, 운행관리, 보안관리 등의 점진적인 적용분야 확장을 통해 철도안전에 대한 신뢰성을 향상시킬 수 있는 방안에 대한 관심이 집중되고 있다. 본 논문에서는 IoT 기반의 다양한 철도인프라 데이터를 활용하여 열차주행상태에 영향을 줄 수 있는 이상상황 인식 모델 및 열차자율주행을 위한 제어기술에 필요한 정보로 인프라 상태를 제공하는 방식을 제안한다. 철도 인프라 상황인지에 필요한 데이터는 레일온도, 선로 지정물, 승객 수, 선로 적설량을 지정하였고, 제안 인식모델의 스게노 퍼지추론 방식을 적용한 후 철도차량 운전관련 취급규정 및 취급세척을 기반으로 퍼지규칙(Fuzzy Rule)을 15개 생성하였다. 인프라데이터셋을 활용하여 제안모델의 인식률 평가에 사용하였으며 인식률 결과는 약 86%의 정확성을 보였다. 퍼지추론 기반 방식의 철도인프라 이상상태 인식모델을 철도분야에 접목시킨다면 기존의 관제기반 방식보다 효율적인 철도인프라 상황인식이 가능할 것으로 판단된다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.5
/
pp.533-538
/
2004
This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The proposed system predicts the electrical loads with the lead times of 1 hour, 24 hour, and 168 hour. To do so, the load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. 96 initial structures are constructed for each prediction lead time. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized prediction modell. To improve the performance of the prediction system in terms of accuracy and reliability at the same time, the prediction model employs only two inputs. It makes possible to interpret the fuzzy rules to be learned. In order to demonstrate the viability of the proposed method, we develop a load forecasting system by using the real load data collected during 1996 and 1997 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability
Journal of the Korean Institute of Intelligent Systems
/
v.5
no.4
/
pp.41-55
/
1995
In this paper, an optimal idenfication method using fuzzy-neural networks is proposed for modeling of
nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter
identification using the intelligent schemes together wlth optimization theory, linguistic fuzzy implication
rules, and neural networks(NNs) from input and output data of processes. Inference type for this
fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and
momentum coefficients of fuzzy-neural networks(FNNs) are tuned automatically using improved modified
complex method and modified learning algorithm. For the purpose of its application to nonlinear processes,
data for route choice of traffic problems and those for activateti sluge process of sewage treatment system
are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling.
The results show that the proposed method can produce the intelligence model with higher accuracy than
other works achieved previously.
We describe word boundary detection that extracts the boundary between speech and non-speech. The proposed method uses two features. One is the normalized root mean square of speech signal, which is insensitive to white noises and represents temporal information. The other is the normalized met-frequency band energy of voice signal, which is frequency information of the signal. Our method detects word boundaries using a recurrent fuzzy associative memory(RFAM) that extends FAM by adding recurrent nodes. Hebbian learning method is employed to establish the degree of association between an input and output. An error back-propagation algorithm is used for teaming the weights between the consequent layer and the recurrent layer. To confirm the effectiveness, we applied the suggested system to voice data obtained from KAIST.
In this study, a weighted fuzzy min-max (WFMM) neural network model for pattern classification is proposed. The model has a modified structure of FMM neural network in which the weight concept is added to represent the frequency factor of feature values in a learning data set. First we present in this paper a new activation function of the network which is defined as a hyperbox membership function. Then we introduce a new learning algorithm for the model that consists of three kinds of processes: hyperbox creation/expansion, hyperbox overlap test, and hyperbox contraction. A weight adaptation rule considering the frequency factors is defined for the learning process. Finally we describe a feature analysis technique using the proposed model. Four kinds of relevance factors among feature values, feature types, hyperboxes and patterns classes are proposed to analyze relative importance of each feature in a given problem. Two types of practical applications, Fisher's Iris data and Cleveland medical data, have been used for the experiments. Through the experimental results, the effectiveness of the proposed method is discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.