• Title/Summary/Keyword: 퍼지논리 제어

Search Result 280, Processing Time 0.034 seconds

The implementation of a Lateral Controller for the Mobile Vehicle using Adaptive Fuzzy Logics (적응퍼지논리를 이용한 Mobile Vehicle의 횡방향 제어기 구현)

  • Kim, Myeong-Jung;Lee, Chang-Gu;Kim, Seong-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.249-256
    • /
    • 2000
  • This paper deals with the control of the lateral motion of a mobile vehicle. A mobile vehicle using in this experiment is able to adapt many unmanned automatic driving system, for example, like a automated product transporting system. This vehicle is consist of the two servomotors. One is used to accelerate this vehicle and the another is used to change this lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral motion of the vehicle. Therefore, the main aim of this paper is investigate the possibility of applying adaptive fuzzy control algorithms to a microprocessor-based servomotor controller which requires faster and more accurate response compared with many other industrial processes. Fuzzy control rules are derived by modelling an expert's driving actions. Experiments are performed using a mobile vehicle with sensing units, a microprocessor and a host computer.

  • PDF

A Study on the Development of Urine Analysis System using Strip and Evaluation of Experimental Result by means of Fuzzy Inference (스트립을 이용한 요분석시스템의 개발과 퍼지추론에 의한 검사결과 평가에 관한 연구)

  • Jun, K. R.;Lee, S. J.;Choi, B. C.;An, S. H.;Ha, K.;Kim, J. Y.;Kim, J. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.477-486
    • /
    • 1998
  • In this paper, we implemented the urine analysis system capable of measuring a qualitative and semi-quantitative and assay using strip. The analysis algorithm of urine analysis was adopted a fuzzy logic-based classifiers that was robust to external error factors such as temperature and electric power noises. The spectroscopic properties of 9 pads In a strip were studied to developing the urine analysis system was designed for robustnesss and stability. The urine analysis system was consisted of hardware and software. The hardware of the urine analysis system was based on one-chip microprocessor, and Its peripherals which composed of optic modulo, tray control, preamplifier, communication with PC, thermal printer and operating status indicator. The software of the urine analysis system was composed of system program and classification program. The system program did duty fort system control, data acquisition and data analysis. The classification program was composed of fuzzy inference engine and membership function generator. The membership function generator made triangular membership functions by statical method for quality control. Resulted data was transferred through serial cable to PC. The transferred data was arranged and saved be data acquisition program coded by C+ + language. The precision of urine analysis system and the stability of fuzzy classifier were evaluated by testing the standard urine samples. Experimental results showed a good stability states and a exact classification.

  • PDF

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.

Design and Evaluation of an Early Intelligent Alert Broadcasting Algorithm for VANETs (차량 네트워크를 위한 조기 지능형 경보 방송 알고리즘의 설계 및 평가)

  • Lee, Young-Ha;Kim, Sung-Tae;Kim, Guk-Boh
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • The development of applications for vehicular ad hoc networks (VANETs) has very specific and clear goals such as providing intellectual safe transport systems. An emergency warning technic for public safety is one of the applications which requires an intelligent broadcast mechanism to transmit warning messages quickly and efficiently against the time restriction. The broadcast storm problem causing several packet collisions and extra delay has to be considered to design a broadcast protocol for VANETs, when multiple nodes attempt transmission simultaneously at the access control layer. In this paper, we propose an early intelligent alert broadcasting (EI-CAST) algorithm to resolve effectively the broadcast storm problem and meet time-critical requirement. The proposed algorithm uses not only the early alert technic on the basis of time to collision (TTC) but also the intelligent broadcasting technic on the basis of fuzzy logic, and the performance of the proposed algorithm was compared and evaluated through simulation with the existing broadcasting algorithms. It was demonstrated that the proposed algorithm shows a vehicle can receive the alert message before a collision and have no packet collision when the distance of alert region is less than 4 km.

Development of a Wheel Slip Control System for Vehicle Cornering Stability (차량 선회 안정성을 위한 휠 슬립 제어시스템 개발)

  • Hong, Dae-Gun;Huh, Kun-Soo;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

Internal singular configuration analysis and adaptive fuzzy logic control implementatioin for a planar parallel manipulator (평면형 병렬 매니퓰레이터의 내부 특이형상 해석 및 적응 퍼지논리제어 구현)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.81-90
    • /
    • 2000
  • Parallel manipulator is suitable for the high precise task because it than has higher stiffness, larger load capacity and more excellent precision, due to the closed-lop structure, than serial manipulator. But the controller design for parallel manipulator is difficult because the parallel manipulator has both the complexity of structure and the interference of actuators. The precision improvement of parallel manipulator using a classical linear control scheme is difficult because the parallel manipulator has the tough nonlinear characteristics. In this paper, firstly, the kinematic analysis of a parallel manipulator used at the experiments is performed so as to show the controllability. The analysis of internal singular configuration of the workspace is performed using the kinematic isotropic index so a sto show the limitation of control performance of a simple linear controller with fixed control gains. Secondly, a control scheme is designed by using an adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller is often used for the control of nonlinear system because it has both the inference ability and the learning ability. Lastly, the effeciency of designed control scheme is demonstrated by the real-time control experiments with IBM PC interface logic H/W and S/W of my won making. The experimental results was a success.

  • PDF

Water Level Control of PWR Steam Generator using Knowledge Information and Fuzzy Logic at Low Power (전문가 지식과 퍼지 논리를 이용한 과도상태에서의 가압경수로 증기발생기 수위제어)

  • Han, Ho-Min;Choi, Dae-Won;Woo, Young-Kwang;Bae, Hyeon;Kim, Sung-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1295-1298
    • /
    • 2003
  • The steam generator level in a PWR is very difficult to control particularly at low power. And the constant control gain and time value are not adaptive in steam generator level controller. In normal operation constant control gain and time value have no problem. But there is problem at low power. So variable control gains based on the temperature are required. The best control gain is decided by the experienced knowledge. A fuzzy gain tuner is used for the gain tuning. In the design of fuzzy gain-tuner processing, the experienced knowledge is employed for making fuzzy rules.

  • PDF

Application of Intelligent Wearable Computing (지능형 웨어러블 컴퓨팅의 응용)

  • Kim, Seong-Joo;Jung, Sung-Ho;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.304-309
    • /
    • 2004
  • This work proposes the wearable and intelligent system to control mobile vehicle instead of user. The system having the ability of assistance as well as portable can be applied to various controller. It is possible to observe the state of mobile vehicle and have a good command of robot instead of human. In this paper, the wearable system operating the mobile vehicle by deciding the velocity and rotation angle that are demanded for collision avoidance with the obtained driving information from mobile vehicle is implemented. To make the proposed wearable system have an intelligence, the hierarchical fuzzy logic and neural network are used.

Communication and data processing strategy for the electromagnetic wave precipitation gauge system (전파강수계 시스템의 통신 및 자료처리 전략 개발)

  • Lee, Jeong Deok;Kim, Minwook;Park, Yeon Gu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.62-66
    • /
    • 2017
  • In this paper, we present the development of communication and data processing strategy for the electromagnetic wave precipitation gauge system. The electromagnetic wave precipitation gauge system is a small system for deriving area rainfall rates within 1 km radius through dual polarization radar observation at 24GHz band. It is necessary to take consider for measurement of accurate precipitation under limited computing resources originating from small systems and to minimize the use of network for the unattended operation and remote management. To overcome computational resource limitations, we adopted the fuzzy logic for quality control to eliminate non-precipitation echoes and developed the method by weighted synthesis of various rain rate fields using multiple radar QPE formulas. Also we have designed variable data packets rules to minimize the network traffic.

A Study on Magnetic Cure System Depending on Dominant Direction of Meridian using Yangdorak Diagnosis Machine with 24 Channels (24채널의 양도락진단기를 이용한 경락의 우세방향에 따른 자기치료시스템에 관한 연구)

  • Kim, Byoung-Hwa;Lee, Woo-Cheol;Han, Gueon-Sang;Sagong, Seok-Jin;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.34-43
    • /
    • 2002
  • In this paper, with the reference of the pulse wave acquired by the pulse-checking device, it is measured the impedance on the key measuring points of the 12 kyungmaks of the human body's left and right by using 24-channels Yangdorak machine. Then, based on the Fuzzy theory, this study diagnosed the each meridian's strength and weakness. After that, both the strengthening and weakening stimulus of magnetic fields are applied to the dominant direction to find out how the degree of strength and weakness of the meridian changed. Ultimately, the magnetic therapy that can stimulate the magnetic field at the time of diagnosis and thereby balancing the interactive of five-system(O-hang) have been materialized. For the stimulation of magnetic fields, a stimulating device which can change the direction and time on a specific part of the key measuring points of the limbs of 24 kyungmaks have been developed and used. The therapeutic methods are as follows. First, the strength and weakness of the meridian have been determined. Second, both the extremely weak meridian of Yin(Shade) and Yang(Shine), and the extremely strong meridian of Yin and Yang were adjusted by applying appropriate ascending and descending stimuli respectively. All these adjusting processes can now be carried out automatically on a personal computer(PC).