클러스터링은 모바일 노드들에 대한 정보를 효율적으로 제공해 주며, 라우팅, 대역폭 할당과 같은 처리성능을 향상시키는 중요한 메카니즘이다. 본 논문에서 우리는 이동성(mobility)으로 인한 동적 속성, 평면구조 구조상에서 발생하는 노드 분산 등과 같은 문제를 효과적으로 해결하고 라우팅 성능을 향상시키기 위한 퍼지 적합도 기반의 클러스터링 기법을 제안한다. 제안된 기법은 FSV(Fuzzy_State_Viewing) 구조를 이용하여 퍼지 적합도${\alpha}$를 수행한다. 퍼지 적합도${\alpha}$는 FSV 구조에서 클러스터링을 수행하기 위한 클러스터헤드 CH(ClusterHead)를 선정하는 역할을 수행한다. 본 논문에서는 이와 같이 제안된 클러스터링 기법을 통해서 기존의 1-홉 클러스터 및 2-hop 클러스터에서 발생되는 문제를 해결하도록 하였다. 제안된 기법의 성능을 알아보기 위하여 우리는 NS-2 시뮬레이터를 이용하여 시뮬레이션을 수행하였다. 우리는 시뮬레이션 평가를 위해 기존의 Lowest-ID, MOBIC, SCA 기법 그리고 제안된 기법과의 성능을 비교하였다. 시뮬레이션 결과 제안된 기법의 성능이 Lowest-ID, MOBIC, SCA 기법에 비해서 우수함을 알 수 있다.
본 논문에서는 비최소위상 시스템으로 표현되는 화력발전소 드럼의 수위제어를 위한 퍼지 제어기를 제안한다. 제안된 방법은 T. Takagi와 M. Sugeno의 퍼지모델을 기반으로 수행된다. 그리고 기존의 PID 및 LQ 제어기법을 적용한 방식과 비교하여 제안된 방법의 개선된 특성을 시뮬레이션 결과로부터 검증하였다.
CP(Counterpropagation)알고리즘은 서로 다른 두 개의 신경망이 하나로 결합 된 혼합형 모델로서, 다른 신경망 모델에 비해 비교적 단순하고 빠른 학습 속도를 보인다. 그러나 CP 알고리즘은 다양한 패턴이 입력되면 충분한 경쟁층의 수가 설정되지 않아 학습이 불안정하고, 출력층에서 연결강도를 조정할 때 일반적인 학습률 조정방법으로 불안정한 학습 결과를 보인다. 이러한 문제점을 해결하기 위해 다수의 경쟁층을 설정하여 경쟁층에서 패턴 분류의 정확성을 높이고, 입력 벡터와 승자 뉴런의 대표 벡터간의 차이와 승자 빈도수를 반영하여 학습률을 동적으로 조정하여 경쟁층에서의 학습이 안정적으로 진행되도록 하고, 출력층에서 연결강도를 조정할 때 모멘텀(momentum)학습법을 적용한 개선된 CP 알고리즘이 제안되었다. 본 논문에서는 개선된 CP 알고리즘에서 경쟁층의 수를 효율적으로 설정하기 위해 퍼지 제어 기법을 이용하여 경쟁층의 수를 결정하는 방법을 제안한다. 제안된 방법은 CP 알고리즘에 입력되는 패턴의 정보를 이용하여 퍼지 소속 함수를 설계하고 입력에 대한 소속도를 계산한 후, 퍼지 제어 규칙을 적용하고, Mamdani의 Min_Max 추론 방법으로 추론한다. 퍼지 추론을 통해 최종적으로 얻어진 값을 무게 중심법으로 비퍼지화 하여 최종적으로 개선된 CP 알고리즘의 경쟁층의 수를 결정하는데 적용한다. 제안된 방법의 학습 및 인식 성능을 평가하기 위해, 숫자, 영어 등과 같이 다양한 패턴을 실험에 적용한 결과, 제안된 방법이 경쟁층의 수를 결정하는데 효과적임을 확인할 수 있었다.
본 논문은 불확실한 $L\ddot{u}$ 카오스 시스템의 동기화를 위한 적응 퍼지 bilinear 동기화 제어 설계 방법을 제안한다. $L\ddot{u}$ 카오스 시스템은 알려지지 않은 파라미터를 가지고 있다고 가정한다. 먼저, 불확실한 $L\ddot{u}$ 카오스 시스템을 TS 퍼지 bilinear 모델링을 통해 재구성한다. 불확실한 파라미터를 가진 TS 퍼지 bilinear $L\ddot{u}$ 카오스 시스템을 기반으로한 적응 퍼지 bilinear 동기화 제어 기법을 설계한다. Lyapunov 이론을 통해서 설계된 적응 퍼지 bilinear 동기화 제어 기법을 통한 TS 퍼지 bilinear $L\ddot{u}$ 카오스 시스템과 제안된 슬레이브 시스템 간의 오차 다이나믹 시스템의 안정성을 보장하고 이를 통해서 불확실한 파라미터를 추정 할 수 있는 적응 규칙을 유도한다. 제안된 동기화 제어 기법을 시뮬레이션을 통해서 그 명확성을 보이고자 한다.
본 논문에서는 역동력학과 퍼지기법을 기반으로 하는 DC 모터 속도제어용 2자유도 제어기를 설계한다. 제안된 제어기는 DC 모터 시스템의 역동력학 모델, 전처리필터와 퍼지보상기로 구성된다. 모델은 쿨롱마찰을 내포하는 비선형 방정식으로 표시되며, 전처리필터는 역동력학 모델에 의해 유발될 수 있는 고주파 영향을 막아주며, 퍼지보상기는 모델의 불확실성, 외란 등으로 인한 오차를 보상한다. 퍼지보상기는 기준 입력 변화에 대한 추종성능과 외란에 대한 오차 제거성능을 동시에 개선하도록 설계된다. 모델과 보상기의 파라미터는 각각 실수코딩 유전알고리즘으로 추정되고 동조된다. 제안된 기법의 유효성은 실험을 통해 검증된다.
본 논문에서는 현재 자가용 차량 번호판으로 사용되고 있는 4종류의 번호판인, 구형 녹색 번호판 두 종류와 유럽식 신형 흰색 번호판 두 종류에 대해 개별 코드를 효과적으로 추출하기 위한 개선된 퍼지 이진화 방법을 제안한다. 차량 영상에서 수직 에지와 반복 이진화 기법, 그리고 Grassfire 알고리즘을 적용하여 번호판의 후보 영역을 추출하고, 번호판의 형태학적 특징을 이용해 잡음을 제거한 후, 최종 번호판 영역을 추출한다 추출된 번호판 영역에서 개선된 퍼지 이진화 기법을 적용하여 개별 코드를 추출한다. 본 논문에서 제안하는 개선된 퍼지 이진화 방법은 추출한 번호판 영역을 그레이 레벨로 변환한 후에 번호판의 명도를 2구간으로 나누고 각각의 구간에 퍼지 소속 함수를 적용하여 번호판 영역을 이진화한 후, 퍼지 소속 함수에 의해 이진화 된 2개의 번호판 영역 중에서 가장 최적화된 번호판 영역을 선택하여 개별 코드를 추출한다. 본 논문에서 제안한 기법을 4종류의 번호판이 부착된 327장(구형녹색 50장, 신형녹색 157장, 짧은 흰색 60장, 긴 흰색 60장)을 대상으로 실험한 결과, 번호판 영역 추출은 327장의 영상중 97%가 추출되었고 개별 코드 추출은 번호판 영역이 추출된 324장의 영상에서 97%가 추출된 결과를 보였다.
브러쉬 없는 직류전동기의 위치제어를 위한 퍼지가변구조제어기를 설계한다. 특히 본 논문에서는 기존의 퍼지제어 기법에서 얻을 수 있는 특징으로부터 하나의 전건부 변수만을 가지는 간단한 퍼지논리제어기의 설계를 기술한다. 가변구조제어는 시스템의 파라메터 변화나 외란에 둔감한 특성을 갖는다. 하지만 리칭페이스에서는 문제가 된다. 이를 개선하기 위하여 본 논문에서는 지수항을 추가한 비선형 슬라이딩면을 구성한다. 그리고 나서 비선형 슬라이딩 면과 슬라이딩 면의 변화율을 입력으로 하는 퍼지 제어기를 설계한다. 이러한 2-입력 퍼지가변구조제어기의 제어 규칙표로부터 하나의 전건부 변수만을 가지는 단일 입력 퍼지가변구조제어기를 설계한다. 이들 제어기의 성능을 입증하기 위하여 시뮬레이션과 실험을 수행한다.
본 논문에서는 급성복통(acute abdominal pain)의 진단을 위하여 퍼지관계곱에서 이용하는 퍼지조건연산자와 알파절단(alpha-cut)의 적합한 선택에 관하여 논의한다. 퍼지관계곱은 퍼지조건연산자를 이용하여 적절히 처리되는데 퍼지조건연산자는 이진 조건 연산과는 달리 다양한 방법으로 구현이 가능하여 적용되는 분야에 연관되어 적절히 선택되어져야 한다. 본 논문에서는 급성복통 진단을 위한 휴리스틱 탐색기법을 설계하고 이에 가장 적합한 퍼지조건연산자와 알파절단을 제안한다. 제안된 퍼지조건연산자와 알파절단의 효율성을 증명하기 위하여 평균 진단성공율을 증가시키는 관점에서 모든 경우의 퍼지조건연산자와 알파절단에 대하여 시뮬레이션을 수행한다.
비선형성이 강한 컨테이너 크레인은 작업 시에 호이스트 와이어로프의 길이와 화물의 질량 변화로 인해 더욱 복잡한 동역학적 특성을 나타낸다. 이 같은 복잡한 비선형시스템을 다루기 위해 퍼지로직이 종종 사용되는데, 특히 각 퍼지 규칙의 결론부를 상태 방정식으로 표현하는 T-S 퍼지모델이 대표적인 방법이다. 본 논문에서는 T-S 퍼지모델을 이용하여 호이스트 와이어로프의 길이나, 화물의 질량이 변화하는 환경에서도 컨테이너 크레인의 동특성을 표현할 수 있는 퍼지모델을 얻는 방법을 제안한다. 이때, 퍼지모델의 소속함수 파라미터는 RCGA가 결합된 모델조정기법을 통해 최적으로 조정된다. 이렇게 구현한 퍼지모델과 컨테이너 크레인 비선형시스템의 개루프 응답을 비교하여 그 유효성을 확인한다.
본 논문에서는 퍼지논리에 기초한 Fisherface 얼굴인식 방법의 확장을 다룬다. Fisherface 얼굴인식 방법은 주성분 분석 기법만을 이용하는 경우에 비해 조명의 방향, 얼굴의 포즈, 감정과 같은 변동에 대해 민감하지 않은 장점을 가지고 있다. 그러나, Fisherface 방법을 포함한 얼굴인식의 다양한 방법들은 입력 벡터가 한 클래스에 할당되어질 때 그 클래스에서 소속의 정도를 0 또는 1로서 나타낸다. 따라서 이러한 방법들은 얼굴영상들이 조명이나 보는 각도로 인해 변형이 생기는 경우에 인식률이 저하되는 문제가 있다. 본 논문에서는 PCA에 의해 변환된 특징벡터에 퍼지 소속도를 할당하는 것으로, 퍼지 소속도는 퍼지 kNN(k-Nearest Neighbor)으로부터 얻어진다. 실험 결과 ORL, Yale 얼굴 데이타베이스에서 기존의 인식방법 보다 향상된 인식 성능을 보임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.