퍼지 균등화(fuzzy equalization)는 어의론적으로(semantically) 의미있고, 실험적으로 (experimentally) 의미있는 언어라벨(linguistic labels)을 붙이도록 하는 조건이다. 지금까지 발표된 퍼지 균등화조건을 갖는 퍼지분할을 생성하는 알고리듬은 주어진 데이터에 대하여, 오직 하나의 퍼지분할만을 생성할 수 있다. 만일 생성된 퍼지 분할이 더 이상 유용하지 못한 것으로 판명되면, 이 알고리듬은 주어진 데이터에 대한 퍼지 균등화조건을 갖는 퍼지분할을 생성할 수 없다. 이는 생성된 퍼지분할을 사용하여 탐색적 발견을 수행하는 데이터마이닝인 경우 더 이상 프로세스가 진행되지 못함을 의미한다. 본 연구에서는 주어진 데이터에 대한 퍼지 균등화조건을 갖는 서로 다른 두 퍼지분할이 존재한다면, 어떠한 관계가 있는지를 증명하고, 위치적 특성을 서술하였다. 이 특성은 추후 퍼지 균등화조건을 갖는 퍼지분할을 원하는 만큼 생성할 수 있는 알고리듬을 만드는데 유용하게 사용 될 수 있다.
퍼지 균등화는 어의론적으로 의미있고, 실험적으로 의미있는 언어레이블을 붙이도록 하는 조건이다. 지금까지 발표된 퍼지 균등화조건을 갖는 퍼지분할을 생성하는 알고리듬은 주어진 데이터에 대하여, 오직 하나의 퍼지분할만을 생성할 수 있었다. 만일 생성된 퍼지 분할이 더 이상 유용하지 못한 것으로 판명되면, 이 알고리듬은 주어진 데이터에 대한 퍼지 균등화조건을 갖는 또 다른 퍼지분할을 생성할 수 없다. 이는 생성된 퍼지분할을 사용하여 탐색적 발견을 수행하는 데이터마이닝의 경우 더 이상 프로세스가 진행되지 못함을 의미한다. 본 연구에서는 주어진 데이터에 대한 퍼지 균등화조건을 갖는 서로 다른 두 퍼지분할이 존재한다면, 어떠한 관계가 있는지를 증명하고, 이를 위치적 특성으로 서술한다. 또한 이 특성을 이용하여 퍼지 균등화조건을 갖는 퍼지분할을 원하는 만큼 생성할 수 있는 알고리듬을 제시하고, 예를 들어 설명한다.
본 논문에서는 자동적인 퍼지 규칙 생성을 위해 퍼지 균등화(Fuzzy Equalization)와 유전알고리즘(Genetic Algorithm)을 이용한 TSK 퍼지 시스템의 구축을 다룬다. Pedrycz에 의해 제안된 퍼지 균등화 방법은 수치적인 데이터로부터 확률분포함수를 구축한 후 전체공간상에서 이들을 적절히 표현할 수 있는 소속함수를 생성한다. 이렇게 구축된 각 입력에 대한 소속함수는 유전알고리즘에 의해 입력공간이 분할되며 결론부 파라미터는 최소자승법에 의해 추정되어 진다. 제안된 방법은 그리드 분할로 인해 규칙의 수가 증가하는 문제를 해결하고 학습데이터와 검증데이터에 의해 타당한 입력공간분할과 퍼지 규칙을 생성할 수 있다. 시뮬레이션의 예로서 Box-Jenkins의 가스로 데이터의 모델링에 적용하여 제안된 방법의 유용성을 알 수 있다.
Inference rules of the knowledge base, generated by experts or optimization, may be often inconsistent and incomplete. This paper suggests a systematic and automatic method which extracts inference rules not from experts' subject but from data. First, input/output linguistic variables are partitioned into several properties by the fuzzy equalization algorithm and each combination of their properties comes to premise of inference rule. Then, the conclusion which is the mast suitable for the premise is selected by evaluating consistent measure. This method, automatically from data, derives inference rules from experience. It is shown through application that extracts new inference rules between hull dimensions and hull performance.
본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성 방법을 제안한다. 기존의 입력공간 그리드 분할을 이용한 ANFIS의 규칙 생성에 있어서는 얻어진 규칙의 수가 지수적으로 증가하는 단점이 있다. 이에, 본 연구에서는 조건부적인 FCM을 이용하여 입.출력 데이터이 특성을 잘 반영할 수 있는 클러스터를 구하고, 퍼지 균등화 방법을 적용하여 출력변수의 소속함수를 자동 생성하도록 하엿다. 이렇게 함으로서 적은 규칙 수를 갖으며서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 트럭 후진제어와 Box-Jenkins의 가스로 데이터의 모델리에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 알 수 있다.
본 논문은 저대비에 의한 영상 정보의 불확실성이 화소가 가지고 있는 명암도의 모호성과 애매성에 근거한다는 점에서 퍼지 변환 함수를 적용하여 영상 향상을 기하고자 한다. 명암도 분포가 한쪽으로 치우친 저대비 영상의 문제를 해결하고자 k-means 알고리즘을 사용하여 물체와 배경을 구분할 수 있는 자동 임계점을 찾고 이를 기준으로 영상의 밝은 부분과 어두운 부분의 대비 향상을 가져올 수 있도록 퍼지 변환 함수를 적용한다. 퍼지 변환 함수는 영상 향상을 위해 3단계-입력 영상을 퍼지 영역으로 변환시키는 퍼지화 단계와 대비를 향상시키는 대비 강화 단계 그리고 퍼지 영역을 다시 영상 영역으로 변환시키는 비퍼지화 단계로 제시된다. 향상된 영상의 성능을 평가하고자 퍼지성 지수와 엔트로피 지수를 제시하여 이를 히스토그램 균등화 기법과 비교하고 실험결과로 성능의 우수함을 보여준다.
본 논문에서 불확실한 근사화 오차 유계 추정을 이용한 불확실한 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기를 제안하였다. 계통 출력이 기준 출력을 추종하기 위해 시스템의 불확실성은 결론부 파라미터의 적응 알고리즘에 의해 온라인으로 조정되는 IF-THEN 규칙을 가지는 퍼지 시스템에 의해 근사화하였다. 또한 근사화 오차가 미지의 상수에 의해 유계된다는 가정 하에 리아프노프 합성법으로 근사화 오차 유계 추정 알고리즘을 제안하였다. 전체 제어 시스템은 제어기내의 모든 신호가 균등 유계이고 추종오차가 점근 안정함을 보장한다. 제안한 적응 퍼지 슬라이딩 모드 제어기의 성능을 도립진자 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.
본 논문은 저대비 영상을 처리하여 보다 향상된 영상을 얻고자 펴지 함소와 개선된 IAFC 모델을 적용한 영상 대비 향상 기법을 제안한다. 저대비에 의한 영상 정보의 불확실성이 무작위성보다 명암도의 모호성과 퍼지성에 근거한다는 점에서 퍼지 집합이론을 영상 향상 기법을 개발하는데 적용한다. 영상 향상의 단계를 퍼지화, 대비 강화 연산, 비퍼지화 단계로 나눠볼 수 있으며, 퍼지화 및 비퍼지화 과정에서 적절한 교차점 선택이 요구되고 이때 개선된 IAFC 모델을 적용하여 최적의 교차점을 선택한다. 데이터 대한 정신없이 임계 파라미터를 조정함으로써 클러스터링을 할 수 있는 개선된 IAFC 모델로 두 클래스만을 형성하도록 하여 명암도의 애매성이 최대가 되는 교차점을 찾아 대비를 강화시킨다. 대비 향상의 정략적 측정을 위해 퍼지성 지수를 사용하며 히스토그램 균등화 기법을 사용한 대비 향상 결과와 비교한다. 저대비 영상에 대해 최적의 교차점의 위치를 정하는 제안한 기법의 결과가 많은 실험영상을 통해 우수함을 보여주고 있다.
본 논문에서는 적응 제어 문제를 다루기 위해 CFCM 클러스터링과 퍼지 균등화 기법을 이용하여 새로운 적응 뉴로-퍼지 제어기를 설계하고자 한다. 먼저 오프라인에서 CFCM은 입력데이터의 성질과 출력 패턴의 성질까지도 고려한 퍼지 클러스터링 기법으로 적응 뉴로-퍼지 제어기의 구조동정을 수행한다. 파라미터 동정은 역전과 알고리즘과 RLSE(Recursive Least Square Estimate)을 이용한 하이브리드 학습을 수행한다. 온라인 학습에서는 시변특성으로 인해 전제부 및 결론부 파라미터를 실시간으로 계산된다. 시뮬레이션으로 온 라인 적응 뉴로-퍼지 제어 시스템의 성능을 입증하기 위해 목욕물 온도제어 시스템에 대해 다루고 전형적인 퍼지 제어기에 비해 오프 라인과 온 라인 설계 모두 좋은 성능을 보이고자 한다.
본 논문은 뉴로-퍼지 시스템에서의 규칙 선택 및 모델 학술에 대하여 EM 알고리즘을 기반으로 하는 구조 동정을 제안한다. 뉴로-퍼지 모델링에서의 초기 파라미터가 학습과정에서의 모델 성능에 큰 영향을 주고 있다. 주어진 데이터에 근거한 파라미터 추정에는 다양한 방법들이 소개되고 응용되어져 왔는데 이전 연구들에서 볼 수 있는 HCM, FCM 등은 데이터와의 유클리디언 거리를 최소화하는 중심점을 파라미터로 선택하는 등의 방법과 퍼지 균등화 등은 데이터의 확률 밀도함수를 이용하여 파라미터를 추정하였다. 제안된 방법에서는 데이터에서의 Maximum Likelihood Estimator를 기반으로 하는 방법으로 EM 알고리즘을 이용하였다. 초기 파라미터의 결정에서 EM 알고리즘을 이용하여 뉴로-퍼지 모델의 전제부 소속함수 파라미터 추정을 실시한다. EM 알고리즘을 이용한 퍼지 모델의 특징으로는 전제부가 클러스터링에 의하여 생성되므로 입력의 차원이나 소속함수의 수가 증가하여도 규칙의 수는 증가하지 않는다. 이를 자동차 MPG 예제를 통하여 제안된 방법의 유용성을 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.