• Title/Summary/Keyword: 팽창유리

Search Result 143, Processing Time 0.026 seconds

A Study on Development of Dielectric Layers for High-Temperature Electrostatic Chucks (고온용 정전기척의 유전층 개발에 관한 연구)

  • 방재철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.31-36
    • /
    • 2001
  • Dielectric material which is suitably designed for the application of the high-temperature electrostatic chucks(HTESCS) has been developed. Electrical resistivities and dielectric constants of the dielectric layer satisfy the demands for the proper operation of HTESC, and coefficient of thermal expansion(CTE) of the dielectric material matches well that of the bottom insulator so that it secures stable structure. In order to minimize particle contaminations, borosilicate glass(BSG) is selected as a bonding layer between dielectric layer and bottom insulator, and silver is used as a electrode. BSG is solidly bonded between upper dielectric and bottom insulator, and no diffusions or reactions are observed among silver electrode, dielectric, and glass layers. The chucking characteristics of the fabricated HTESC are found to be superior to those of the commercialized one.

  • PDF

Characteristic of Underfill with Various Epoxy Resin (에폭시 수지에 따른 언더필의 특성에 관한 연구)

  • Noh, Bo-In;Lee, Jong-Bum;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.39-45
    • /
    • 2006
  • This study was investigated the thermal properties of underfill with various epoxy resins using thermal analysis methods such as differential scanning calorimetry (DSC), thermo gravimetry analysis (TGA), dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). And, the adhesion strength of the underfills/FR-4 substrate was evaluated. The glass transition temperature (Tg) of underfill which was composed the cycolaliphatic epoxy resin was lower than that of underfill which was not composed the cycolaliphatic epoxy resin. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The coefficient of thermal expansion (CTE) of underfill which was composed the cycolaliphatic epoxy resin was higher than that of underfill which was not composed the cycolaliphatic epoxy resin. The excessive curing temperatures caused a weak boundary layer of epoxy resin, which resulted in a deterioration of mechanical properties in the epoxy resin and thus led to poor adhesion property between the underfill/FR-4 substrate.

  • PDF

A Study on the Fabrication of Hollow Glass Sphere by Using a Liquid-mix Precursor (혼합액상 전구체를 이용한 유리 중공구체의 제조에 관한 연구)

  • Lee, Yong Bin;Kim, Ki Do;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1186-1191
    • /
    • 1999
  • By using a liquid-mix precursor, we prepared the hollow glass spheres(HGS) as an additive of polymer compound which are used in the field of modifier, promoter, filler, and reinforcement. Liquid-mix precursor is a mixture of 40% sodium silicate aqueous solution, boric acid as a insolubilizing agent, and urea as a blowing agent. To obtain the precursor particles which are fed into a gas flame furnae, the above liquid-mix precursor was dried in oven and crushed with ball mill. We assumed the size of precursor particles ($53{\sim}63{\mu}m$, $63{\sim}180{\mu}m$), temperature of furnace($800{\sim}1200^{\circ}C$), and amount of urea(0~30 g) as the parameters affecting on the properties of HGS. As a result mean particle size of HGS increases with increasing the temperature of furnace and the amount of urea and with decreasing the size of precursor particles. Also, we found that incresing the amount of urea is related to a decrease of the crush strength of HGS.

  • PDF

폴리카보네이트 특성 향상을 위한 Al-Si-N 박막의 제작 및 크랙 방지

  • Song, In-Seol;An, Se-Hun;Lee, Geun-Hyeok;Jang, Seong-U;Kim, Dong-Hwan;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.168.1-168.1
    • /
    • 2015
  • 자동차 산업분야에서 차량 경량화의 한 수단으로, 자동차용 유리를 무게가 가볍고 고강도 투명 고분자 소재인 폴리카보네이트로 대체하고자 하는 연구가 이루어지고 있다. 하지만, 폴리카보네이트의 낮은 내 마모 특성과 자외선에 의한 열화 및 변색 현상은 해결해야 할 문제점으로 지적되고 있다. 본 연구에서는, 폴리카보네이트의 내마모 특성을 향상시키기 위해 HIPIMS+ (High Power Impulse Magnetron Sputtering+) 방법을 이용하여 투과율이 확보되고, 고경도 특성을 갖는 Al-Si-N 박막을 증착하였다. 고속증착을 하기 위해 Target에 인가되는 Power를 올리게 되었는데, 열팽창 계수가 큰 고분자 물질인 폴리카보네이트 시료의 온도가 상승하여 증착된 박막과의 열팽창 계수 차이에 의해 박막에 Crack이 형성되는 문제가 발생하였다. 증착되는 Al-Si-N 박막의 공정 압력에 따른 Stress 제어 방법 및 폴리카보네이트 시료의 온도 상승을 막기 위한 알루미늄 구조체를 이용함으로써 박막의 Crack 형성을 억제하고자 하였다. 박막의 Stress를 확인하기 위하여 AFM (Atomic Force Microscope)과 OM (Optical Microscope)을 이용하여 분석하였고, 박막의 경도는 Knoop ${\mu}$-hardness tester를 사용하여 측정하였다. Al-Si-N 박막 경도는 Si at.%/(Al at.% + Si at.%) 비율이 16%에서 33 GPa의 경도를 갖는 것을 확인하였다. UV-Vis Spectrometer를 이용하여 투과율을 측정한 결과, 400-700 nm 파장의 가시광 영역 평균 투과율은 80%로 측정되었다.

  • PDF

A STUDY ON THE HYGROSCOPIC EXPANSION OF COMPOMER (컴포머의 수화팽창에 관한 연구)

  • Park, Kyung-Jin;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • Compomer, like resin composite, undergoes shrinkage during setting. But, due to the structure of glass ionomers and their hydrophilic nature, water sorption and subsequent expansion may lead to compensation of the shrinkage. The purpose of this study was to, evaluate the change of mliroleakage after 30day-water-storage of compomer and composite resin. 40 sound third molars were used for the microleakage test. Z-100 resin was used for the control groups(Group I and III), Dyract AP for the experimental groups(Group II and IV). The storage time was 1 day in Group I, II and 30days in Group III, IV. The result from the this study can be summarized as follows; 1. No significant difference could be found in microleakage of occlusal margin between each group(p>0.05). 2. In microleakage of gingival margin, no significant difference could be found between group I and II, and between group I and III (p>0.05). 3. Group IV was showed less microleakage than group II and group III in gingival margin(p<0.05).

  • PDF

Performance Analysis of Direct Expansion and Organic Rankine Cycle for a LNG Cold Power Generation System (LNG냉열발전시스템에 있어서 직접팽창 및 유기랭킨사이클의 운전성능평가)

  • Cho, Eun-Bi;Jeong, Moon;Hwang, In-Ju;Kang, Choon-Hyoung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The liquefaction to produce LNG (liquefied natural gas) is the only practical way for mass transportation of natural gas across oceans, which accompanies considerable energy consumption in LNG plants. Power generation is one of the effective utilization ways of LNG cold energy which evolves during the vaporization process of LNG with sea water. In this work, performance analysis of two cold energy generation processes, direct expansion and organic Rankine cycles, were carried out by using Aspen HYSYS simulation. The results show that the performance of the organic Rankine cycle is superior to the direct expansion.

The Change of Physical Properties of Epoxy Molding Compound According to the Change of Softening Point of ο-Cresol Novolac Epoxy Resin (올소 크레졸 노볼락 에폭시 수지 연화점 변화에 따른 에폭시 몰딩 컴파운드의 물성 변화)

  • Kim, Hwan Gun;Ryu, Je Hong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • The physical properties of epoxy molding compound (EMC) according to the change of softening point of epoxy resin have been investigated in order to study the relationship between the properties of o-cresol novolac epoxy resin, which is main component of EMC for semiconductor encapsulation, and EMC. The softening points of used epoxy resin are 65.1 $^{\circ}C$, 72.2 $^{\circ}C$, and 83.0 $^{\circ}C$, respectively. The flexural strength and flexural modulus as mechanical properties were measured, and thermal expansion coefficient, thermal conductivity and glass transition temperature (Tg) as thermal properties, and spiral flow as moldability have been investigated to see the change of physical properties of EMC. The flexural modulus, thermal expansion coefficients in the glass state (${\alpha}_1$), and thermal conductivity of EMC were found to be keep constant value irrespective of the change of softening point, but Tg increased with softening point of epoxy resin, and the spiral flow decreased with that. It can be considered that these phenomena are due to the increase of crosslinking density of EMC according to the increase of softening point. The transition points were found out in the thermal expansion coefficient data in the rubbery state (${\alpha}_2$) and the flexural strength data. These can show the decrease of filler dispersion according to increase of epoxy resin viscosity.

  • PDF

Utilization of Electric Arc furnace Slag md Converter Slag after Aging for Concrete Aggregate (콘크리트용 골재로서 에이징처리한 제강슬래그외 활용)

  • 문한영;유정훈
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.597-607
    • /
    • 2002
  • Electric arc furnace and converter slag are produced by about 6 millions tons in Korea at 2000 year. But compared with blast furnace slag, those are utilized only in unvalued material like landfill and road construction. There are unstable materials, like free CaO, in electric arc furnace and converter slag at steel-manufacturing process. This might cause volume expansion in concrete, if electric arc furnace and converter slag aggregates were used in concrete. This expansion may reach to crack or collapse of concrete. It is therefore settled by standard specification for concrete that electric arc furnace and converter slag aggregates have not to use in concrete. First of all, volume stability and stabilized process should be solved in electric arc furnace and converter slag aggregate to use in concrete. In this study, 6 types of aging are evaluated for effects of stabilization to reduce the expansion of electric arc furnace and converter slag. h converter slag aggregate, these types of aging are not good for volume stability for concrete aggregate, and even if converter slag aggregate is treated with aging, concrete with it has some problems that strength is reduced with curing days. But in electric arc furnace slag aggregate treated with hotwater and steam aging, the expansion of electric arc furnace slag aggregate is reduced about two times than that of converter slag aggregate, and electric arc furnace slag aggregate concrete has good results in strength compared with control concrete using crushed stone.

The Effects on The Glass Processing by Alumina Addition in Soda Lime Glass (소다석회유리에서 Alumina첨가제에 따른 제병 공정의 영향)

  • Choi, Young-June;Kim, Jong-Ock;Kim, Taik-Nam
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.69-85
    • /
    • 2002
  • The chemical composition of bottle glass is consisted of Na2O-CaO-SiO2. However the cullet is mornally used in order to decrease the melting tsmperature. This induce the productivity of bottle and decreases the cost. The addition of plate glass decreases the Al2O3 content and in fluence the stone phenomenon and devitification in botle glass. Tus the Feldspar is added in order to increase the Al2O3 content when plate cullet was added in melting. The Tridymite crystal was observed over 7.5% Al2O3 contents, which shown as white crystal in appearance. It is Supposed that the Wollastonite Would be occurred in more over 7.5% Al2O3. This fad id well consised With the Litertctures.

  • PDF

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.