• Title/Summary/Keyword: 팽창밸브

Search Result 134, Processing Time 0.023 seconds

A Study on the Cycle Analyzing and Intake Valve Control by the Miller Method with a High Expansion into Low-Speed Diesel Engine (저속 디젤기관에서 고팽창의 밀러방식에 의한 사이클 해석 및 흡기밸브제어에 대한 연구)

  • Jag, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1100-1106
    • /
    • 2009
  • Recently, there are quite a lot of attention is drown on the researches related to of Miller method applied high expansion cycle. For this study, high expansion cycles are formed and analyzed with the base view point of thermodynamics, and the features of each factors are also investigated. As a result of analysis, the expansion-compression ratio is expected with a decrease of effective compression ratio as intake valve closing time retarded, however, the decrease of mean effective pressure and its output is accompanied with the counterflow of intake air. Accordingly, as the consequence of such failure, it is expected that an alternative is needed for the realization of high expansion cycles, and the improvement over thermal efficiency. To materialize such cycle, the control system to delay the closing time of intake valve was designed and VVT, the 3 S/B low speed diesel engine, is applied to evaluate the efficiency. The result of the trial shows that there was no significant errors.

Expansion Valves Characteristics for Development of Control System on Air Conditioning and Refrigeration Systems (공조.냉동장치의 제어시스템 개발을 위한 팽창밸브 특성)

  • Kim, J.D.;Jang, J.E.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.34-40
    • /
    • 1998
  • Performance characteristics of a refrigeration systems with various expansion valves and superheat changes were investigated experimentally. Experimental data have been taken utilizing three different devices; a thermostatic expansion valve, a linear type electronic expansion valve and a solenoid type electronic expansion valve. The data taken from tile three types of expansion valves were discussed with the temperature distribution of each zone in the evaporator and the superheat changes of the evaporator outlet In each zone temperature distribution fluctuated larger with the thermostatic expansion valve than with the electronic expansion valves. The optimum superheat ranged from $5^{\circ}C\;to\;15^{\circ}C$, and the superheat with the thermostatic expansion valve showed hunting phenomenon, which affected the evaporating and condensing temperature.

  • PDF

Characteristics of Capacity Control of Variable Speed Water Cooler with the Electronic Expansion Valve Open/Close Degree (전자팽창밸브 개도에 따른 가변속 수냉각기의 용량제어 특성)

  • Beak, Seung-Moon;Moon, Choon-Geun;Kim, Hyun-Woo;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.282-288
    • /
    • 2010
  • The paper presents the characteristics of capacity control of variable speed water cooler with the electronic expansion valve open/close degree. It is a preliminary study on the optimum control of the water cooler system using a variable speed compressor controlled by inverter. The electronic expansion valve controlled by the variation of compressor speed maintains the constant degree of superheat at the evaporator outlet, which aims to find the degree of superheat obtaining the optimum refrigeration effect. The investigation indicates that there is a point achieving the maximum cooling capacity by the variation of the electronic expansion valve open/close degree with constant compressor speed.

A Study on the Possibility for the Replacement of a Thermal Expansion Valve to an Electronic Expansion Valve (온도식팽창밸브의 전자식팽창밸브로의 대체 가능성에 관한 연구)

  • Han, Do-Young;Jeong, Seong-Woock
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.695-700
    • /
    • 2006
  • For the precise superheat temperature control of an air conditioner, an electronic expansion valve may be used instead of a thermal expansion valve. In this paper, technical and economical aspects of expansion valves were studied in order to find out the possibility to use an electronic expansion valve to replace a thermal expansion valve.

  • PDF

Feasibility Study of Pressure Letdown Energy Recovery from the Natural Gas Pressure Reduction Stations in South Korea (한국의 천연가스 도시정압기지에서 감압에너지 회수에 대한 타당성 연구)

  • Yoo, Han Bit;Hong, Seongho;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.9-17
    • /
    • 2015
  • Almost all of the natural gas consumed in South Korea is compressed into very high pressure for the transportation through the underground pipelines, then reduced in pressure regulation stations before delivery to the consumer. For pressure reduction, expansion valves have been used due to the simple and effective installation, but recover none of the energy in the gas during compression. Hence, turbo-expanders are proposed instead of the valves to accomplish the same pressure letdown function and recover some of the compression energy in the form of shaft work converting into electric powers. Here we have theoretically calculated the electric powers at the pressure reduction from 68.7 bar to 23 bar (which are the average values taken at the inlet and outlet points of the expansion valve in medium-pressure regulation stations) according to the inlet conditions of temperature and flow rate. The natural gas is considered as two cases of a pure methane and the mixture of hydrocarbons with a very small amount of nitrogen, and the Peng-Robinson equation of state is employed for the calculation of required thermodynamic properties. The electric energy is recovered as much as 1596 MW(methane) and 1567 MW(mixture) based on the total supply of natural gas in 2013.

Modelling of an Automotive Block Type Thermostatic Expansion Valve (자동차용 블록식 온도감응 팽창밸브의 모델링)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.251-258
    • /
    • 2011
  • The objective of this study is to propose two empirical correlations to predict the mass flow rate through an automotive block type thermostatic expansion valve and then to evaluate the correlations. The first correlation is deduced by modifying the basic equation of the orifice meter for the mass flow rate and the second correlation is deduced by using the Buckingham's ${\pi}$ theorem. The first correlation showed very good agreement on the measured data for R134a, given by Monforte. Average relative deviation and standard deviation of it are 2.5% and 1.6%, respectively. The second correlation agreed on the same measured data with a little greater deviations. The two correlations may apply to common expansion valves which have different geometrical sizes of the same shape.

Study on Control of Refrigerant Flow Rate and Characteristics of Superheat in Evaporator using Electronic Expansion Valve (전자(電子) 팽창밸브를 이용(利用)한 증발기(蒸發器)의 냉매(冷媒) 流量(유량) 제어(制御) 및 과열도(過熱度) 특성(特性)에 관한 연구(硏究))

  • Choi, S.O.;Kim, J.H.;Yang, H.S.;Kim, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.380-387
    • /
    • 1994
  • An experimental study was performed to investigate the characteristics of refrigerant flow rate control and superheat in an evaporator with an electronic expansion valve(EEV). The EEV used in this study was devised using a needle valve coupled with a stepping motor controlled by a personal computer. A Pill control equation was used to control the superheat of the evaporator and to set the superheat to $5^{\circ}C$. In order to determine an optimum running condition for the system, Pill parameters were varied for the wide range of values. The running condition of an air conditioning system with a PI control was reasonably stable compared with that of the Pill control. Experimental results for the PI control using parameter values, $K_p=1.5$, $T_i=400(sec)$ and $T_s=6(sec)$ show that the superheat reached its target value. When external disturbances were introduced to the system, the superheat target value was reached within about 3 minutes. When the EEV was applied to the air conditioning system driven by an inverter, room temperature control was excellent.

  • PDF

Development of simulation program for TXV and capillary tube performance analysis (감온 팽창밸브 및 모세관 성능 시뮬레이션 프로그램 개발)

  • 박봉수;한창섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.170-180
    • /
    • 2000
  • The equation which is related to TXV performance was investigated. On the basis of this equation, the TXV simulation program was developed. Results of the developed TXV simulation program were proven by the experiment on the influence of pressure difference between TXV entrance and exit and equalizing pressure. Simulation results show very good agreement with experimental results, the RMS error between them was 1.83%. The capillary tube simulation program was made by the basic equation of fluid dynamics. Results of this program were proven by data which were experimented previously. The RMS error between simulation results and experimental results was 4.13% .

  • PDF

A Design of the Block Type Expansion Valve in Automotive Air Conditioning System using HFC-134a (신냉매용 자동차 공조 시스템에서 블록식 팽창밸브의 설계)

  • Kim, K.H.;Park, S.H.;Kang, W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.196-203
    • /
    • 2003
  • This study was performed to design the optimal block type expansion valve through analyzing the characteristics of the block type expansion valve in automotive air conditioning system using HFC-134a. Because an alternative refrigerant (HFC-l34a) is being used instead of CFC-12 for automotive air conditioning system, newly designed air conditioning components are necessary due to changes in characteristics. The performance tests were accomplished through the test bench, that is manufactured based on the study. And then it was carried out to measure the variation of temperature and pressure at each part of the air conditioning system according to the compressor speed.

Studies on the Performance of a Cam Driving Electronic Expansion Valve for Vehicles (캠구동 방식을 적용한 자동차 공조시스템용 전자팽창밸브의 성능에 관한 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.732-736
    • /
    • 2016
  • Air conditioning part designs are moving towards higher efficiency and productivity. The expansion device is one of the core parts of an air conditioning system and controls the refrigerant quantity, evaporation load, compression capacity, and condensation capacity. In this study, an electronic expansion valve for two working fluids ($CO_2$ and R134a) was developed for air conditioning systems in vehicles. The valve uses an eccentric cam driving structure instead of a lead screw to decrease manufacturing costs and increase productivity. The pressure resistance and flow rate performance was evaluated using numerical analysis. At maximum operation conditions and burst pressure conditions with $CO_2$, the maximum stresses on the valve model were about 98 MPa and 223 MPa, respectively. The maximum flow rates of $CO_2$ and R134a with different orifice openings were about 550 kg/h and 386 kg/h, respectively. The performance with R134a was verified by experiments.