• Title/Summary/Keyword: 팬 형상

Search Result 98, Processing Time 0.029 seconds

Optimal Design using Flow-structure Interaction Analysis Method of Engine Generator Cooling Fan (엔진발전기 냉각팬의 유동-구조 연성해석 기법을 이용한 최적설계)

  • Kim, Seung Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2020
  • In this study, the optimization design data was presented by analyzing the performance and durability of the cooling fan by one-way fluid-structure interaction analysis of the cooling fan shape used in the engine generator. For this purpose, a steady-state analysis was performed on the flow field inside the cooling fan, and the durability was analyzed by using the steady-state calculation results as input data for structural analysis. Six types were modeled for fluid analysis by changing the blade and sweep angle of the cooling fan, and the ratio of mass flow rate and torque was best in A type, but B type with relatively large mass flow rate was the best. It was judged to have flow performance. As a result of examining the structural analysis by setting the four blade thickness of the B type selected through the fluid analysis, it was judged that B Type-3 is the most suitable when considering the fatigue safety factor.

Development of high performance and low noise compact centrifugal fan for cooling automotive seats (자동차 시트 쿨링용 고성능·저소음 컴팩트 원심팬 개발)

  • Kim, Jaehyun;Ryu, Seo-Yoon;Cheong, Cheolung;Jang, Donghyeok;An, Mingi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.396-403
    • /
    • 2018
  • In this paper, a high-performance and low-noise centrifugal fan is developed for cooling automotive seats which provide a driver with pleasant driving environment. First, the flow characteristics of the existing fan unit was analyzed using a fan performance tester and CFD (Computational Fluid Dynamics) simulations. The analysis of the predicted flow field indicated vortex flow near the tip of fan hub and stagnation flow on the top of fan hub. Two design points are devised to reduce the vortex flow and the stagnation flow observed in the existing fan unit. First, the cut-off clearance which is the minimum distance between the fan blade and the fan housing is increased to reduce the vortex strength and, as a result, to reduce the overall sound pressure level. Second, the hub shape is more modified to eliminate the stagnation flow. The validity of proposed design is confirmed through the numerical analysis. Finally, a prototype is manufactured with a basis on the numerical analysis result and its improved flow and noise performances are confirmed through the P-Q curves measured by using the Fan Tester and the SPL (Sound Pressure Level) levels measured in the anechoic chamber.

Dynamic Modeling and Stabilization of a Tri-Ducted Fan Unmanned Aerial Vehicles using Lyapunov Control (삼중 덕티드 팬 비행체 운동모델링 및 리아푸노프 제어를 이용한 안정화)

  • Na, Kyung-Seok;Won, Dae-Hee;Yoon, Seok-Hwan;Sung, Sang-Kyung;Ryu, Min-Hyoung;Cho, Jin-Soo;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.574-581
    • /
    • 2012
  • Because of the exposed blade, the UAV using the rotors entail the risks during operation. While a wrapped duct around the fan blades reduces risks, it is a higher thrust performance than the same power load rotor. In this paper, for applying advantages of a ducted fan, the tri-ducted fan air vehicle configuration is proposed. The vehicle has three ducted fans. Two of them are the same shape and size and the third one is the smaller. It is possible to control a rapid attitude stability using thrust vector control. The equations of motion of the tri-ducted fan were derived. Lyapunov control input was applied to the system and stable inputs were derived. A nonlinear simulation was fulfilled by using parameters of a prototype vehicle. It verified a stable attitude and analyzed results.

환기용 부스 설계 최적화 검증

  • Jang, Ho-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.85-89
    • /
    • 2016
  • 실제 환풍용 팬의 수치를 이용하여 환기용 부스의 형상에 대한 내부 유동의 변화 양상과 유동의 정상상태에 따른 해석결과 비교를 수행하였다. 벽면이 기울어진 형상이 직사각형 형상의 부스에 비해 나은 내부 흐름을 보여 환기용 부스에 더 적합한 형상임을 확인할 수 있었다. 비정상 유동과 정상 유동은 해석 결과에서 다소 차이를 보였으며, 이는 차후 실험을 통해 검증할 예정이다.

  • PDF

Optimization of flow performance by designing orifice shape of outdoor unit of air-conditioner (에어컨 실외기 냉각팬 시스템의 오리피스 형상 설계를 통한 유량 성능 최적화)

  • Ryu, Seo-Yoon;Kim, Sanghyeon;Cheong, Cheolung;Kim, Jong-Uk;Park, Byeong Il;Park, Se Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.371-377
    • /
    • 2017
  • The performance of an air conditioner is closely related to the cooling performance of a split-type outdoor unit so that, in most of the relevant preceding studies, the independent performance of an axial fan in an outdoor unit has been studied. However, there is a lack of research on the effects of other components in an outdoor units was rarely investigated. Therefore, in this paper, the effects of the fan orifice among other parts on the flow performance of the outdoor unit was numerically investigated. A virtual fan tester consisting of 18 million grids was developed for highly resolved flow simulation. The unsteady RANS (Reynolds-averaged Navier-Stokes) equations are numerically solved by using finite-volume CFD (Computational Fluid Dynamics) techniques. In order to verify the validity of the numerical methods, the predicted P-Q curve of the cooling fan in a full outdoor unit is compared with the measured one. Optimization of orifice shape was carried out for maximum flow performance of the outdoor unit using the validated numerical method.

Numerical Analysis of Flows for Agricultural Dryer with Heat Pump (히트펌프를 이용한 농산물 건조기 유동 수치해석)

  • Park, Sang-Jun;Lee, Young-Lim
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.676-678
    • /
    • 2011
  • 히트펌프 사이클을 이용한 건조 공정은 최종 제품의 생산을 위하여 많은 산업 분야에 요구되는 필수 공정으로 본 논문에서는 대형 히트펌프 건조기의 상부 분리대의 가이드 베인의 형상 및 수량을 최적화 하였다. 이를 위해 팬은 성능곡선 모델을 사용하였고, 증발기와 응축기는 다공성 매질로 가정하였다. 이는 팬을 통과하여 가이드 베인을 따라 건조기 입구로 들어가는 바람의 균일도를 예측할 수 있어 설계 정확도 향상에 기여할 수 있다.

  • PDF

Experimental Study for the Effect of Dimensional Parameters on the Performance of Small Centrifugal Fans (소형 원심형 팬의 형상변수가 성능에 미치는 영향에 대한 실험적 연구)

  • Choi, Jong-Soo;Rhee, Wook
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.57-63
    • /
    • 1998
  • The performance of a centrifugal fan depends on the dimensional parameters of impeller, such as the inlet and exit diameter, area ratio, relative flow angles to the blade, and number of blades. These design parameters, however, are inter-related, so it is very difficult to identify the effect of each parameter to the fan performance. In this experimental study the effect of the design parameters on the performance of a small centrifugal impeller being used for vacuum cleaners are investigated. Total 30 shrouded impellers with 120mm diameter were tested and the results were non-dimensionalized to compare their performance.

  • PDF

A Study on Thermal Deformation due to Fan Shape of Hair Dryer (헤어드라이기의 팬 형상에 따른 열변형에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.82-87
    • /
    • 2017
  • This study investigates thermal deformation due to fan shape of a hair dryer. In this study, thermal analysis showed that the shape of an electric fan results in lower temperature than that of a sieve frame. Among the shapes of electric fans, the temperature change decreases as the number of wings decreases. As a result of thermal deformation, model 4 (sieve frame shape) showed increased change of deformation compared to models 1, 2, and 3 (with electric fan shapes). Thus, the model 1 dryer with the sieve frame shape is shown to have the least durability among models 1, 2, 3, and 4. It is thought that the analysis results of this study can be applied to durability improvement and safer design of hair dryers.

Design of an HTS Magnet for a 2.5 MJ SMES (2.5 MJ SMES용 고온초전도 마그넷 설계)

  • Lee, Se-Yeon;Kwak, Sang-Yeop;Kim, Young-Il;Kim, Woo-Seok;Lee, Ji-Kwang;Park, Chan;Choi, Kyeong-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.631-632
    • /
    • 2008
  • 본 논문은 2.5MJ의 저장용량을 가지는 SMES 용 고온초전도 마그넷의 설계에 관한 연구 결과이다. 선재는 2세대 고온초전도 선재인 YBCO CC를 2단으로 적층하여 사용하였다. 운전전류는 전도냉각 방식을 사용하는 것을 가정해 22K의 운전온도에서 선재의 임계전류를 고려하여 600A 이상으로 결정하였다. 마그넷의 형상은 싱글 솔레노이드와 토로이드 형태로 각각 설계하였고 싱글 솔레노이드는 더블 팬케이크 모듈코일을 적층하여 구성 토로이드는 싱글팬케이크 모듈코일을 배열하여 모듈러 토로이드로 구성하였다. 각 형상별 설계결과를 통해 저장에너지와 선재사용량 그리고 누설자장의 크기를 각각 비교하였다.

  • PDF

The Effects of Drag Reduction by Flow Control Grooves using CFD (CFD를 이용한 유동제어 띠에 의한 저항감소 효과 조사)

  • Park, Dong-Woo;Yoon, Hyun-Sik;Koo, Bon-Guk
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.335-341
    • /
    • 2014
  • Faced with global agenda of greenhouse abatement program including regulations and $CO_2$ emission trading scheme, shipping companies are enforced to a high level of efficiency in fuel consumption. Accordingly shipbuilding companies worldwide are required to develop fuel-efficient ships which otherwise traditionally consume a great amount of fossil fuels. In this dissertation, relevant to the improvement of fuel efficiency for commercial ships, design methodology through the numerical simulations are intensively described. This work consists of derivation of effective hydrodynamic design practice based on the application of longitudinal grooves to effectively improve the pressure distribution around ship hull. The primary objective of the present study is to improve ship resistance performance using longitudinal grooves which originate from long strips on the abdomen of humpback whale. Several groove shapes have been extensively investigated and the proposed shape efficiently controlled the variation of pressure distributions acting on the hull surface.