• Title/Summary/Keyword: 팬텀

Search Result 929, Processing Time 0.028 seconds

Fabrication and Optimization of a Fiber-optic Dosimeter for Proton Beam Therapy Dosimetry (의료용 양성자선 계측을 위한 광섬유 방사선량계의 제작 및 최적화)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Yoo, Wook-Jae;Seo, Jeong-Ki;Lee, Bong-Soo;Hwang, Eui-Jung;Shin, Dong-Ho;Park, Sung-Yong
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • In this study, we have fabricated a fiber-optic dosimeter for a proton beam therapy dosimetry. We have measured scintillating lights with the various kinds of organic scintillators and selected the BCF-12 as a sensor-tip material due to its highest light output and peak/plateau ratio. To determine the optimum diameter of BCF-12, we have measured scintillating lights according to the energy losses of proton beams in a water phantom. Also, we determined the adequate length of organic scintillator by measuring scintillating lights according to the incident angles of proton beam. Using an optimized fiber-optic dosimeter, we have measured scintillating lights according to the dose rates and monitor units of proton accelerator.

Determination of Phantom Scatter Factors for Small Photon Fields (소조사면 광자선의 팬톰산란인수 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Total scatter factor ($S_{cp}$), head scatter factor ($S_c$) and phantom scatter factor ($S_p$) are very important for accurate radiation therapy at stereotactic radiosurgery (SRS) with irregular field shape using micro-MLC and intensity modulated radiation therapy (IMRT) including many small field sizes. In this study we measured and compared $S_{cp}$ with reference ion chamber, pinpoint chamber and diode detector and adapted the resuls form diode detector. Head scatter factors for small field sizes were also measured with diode detector covered 1.5 cm-thick solid water build-up cap. Some errors like as electron contamination of 1~3% were included in the values of Sc but trend of total results of $S_c$ was coincided with basic theory. Phantom scatter factors for small field sizes were calculated form $S_{cp}$ and $S_c$. The results of $S_p$ were compared and were well-agreed with those of other authors.

  • PDF

ROC Analysis of Simulated Chest Lesions for Computed Radiography and Digital Radiography at Various Tube Voltages (다양한 관전압에 따른 CR과 DR 모의병변 흉부 영상의 ROC 평가)

  • Cho, Hyo-Min;Kim, Hee-Joung;Lee, Chang-Lae;Jung, Ji-Young;Park, Hye-Suk
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.298-304
    • /
    • 2008
  • Current digital radiographic systems are rapidly growing in clinical applications. The purpose of this study was to evaluate the diagnostic performance of computed radiography (CR) and digital radiography (DR) at different tube voltages in the detection of simulated chest lesions. Patterns of simulated interstitial lung disease, incipient infiltration, and nodules were superimposed over an anthropomorphic chest phantom. A simulated chest phantom radiograph was obtained with CR and DR at different tube voltages (70 kV, 90 kV, and 120 kV). A total of 18,000 observations were analyzed using a receiver operating characteristic (ROC) analysis. The detection of all lesions showed higher $A_z$ values at 70 kV than 120 kV with CR. For the DR, mean $A_z$ values at 70 kV were higher than other tube voltages not all lesions but for micro-nodule interstitial lung disease, linear interstitial lung disease, and incipient infiltration. Based on these results, a clinical study should be performed to judge the use of suitable tube voltage according to the type of detector system and lesions.

  • PDF

A Comparative Study on the Lens Dose According to the Change of Shielding Material Used in Brain Computed Tomography (Brain CT에서 차폐 재료 변화에 따른 수정체 선량 비교 연구)

  • Hwang, Incheol;Shin, Woonjae;Gang, Eunbo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • The cases of radiographic inspection for medical diagnosis in Korea have been continuously increasing year after year, which pays particularly more attention to CT which occupies over the half of medical radiation exposure. To find an effective alternative for reducing radiation exposure, the researchers conducted comparative experiments using some shields made of bismuth, aluminum 6mm, and silicone 22mm. These shielding materials have been used to reduce the entrance surface dose (ESD) on lenses, maintaining the CT number, noise, and uniformity in brain CT scanning which forms the largest part in CT scanning these days. These experiments showed that the doses in the spiral scan parallel to IOML and the conventional scan in Bismuth were 26.41% and 17.52%, respectively; in Aluminum 18.24% and 9.39%; in Silicone 19.47% and 14.39% lower than compared with those in the cases without any shields. In the items of the CT number, noise, and uniformity, the bismuth shield satisfied exceedingly the standards of the phantom image test while aluminum and silicone were within. To keep the graphic quality and get good shielding effect, we recommend the silicone shield which can be manufactured and purchased with ease.

Usefulness Evaluation and Fabrication of the Radiation Shield Using 3D Printing Technology (3차원 프린팅 기술을 이용한 차폐체 제작 및 유용성 평가)

  • Jang, Hui-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1015-1024
    • /
    • 2019
  • In the medical field, X-rays are essential in the diagnosis and treatment of diseases, and the use of X-rays continues to increase with the development of imaging technology, but X-rays have the disadvantage of radiation exposure. Although lead protection tools are used in clinical practice to protect against radiation exposure, lead is classified as a heavy metal and can cause harmful reactions such as lead poisoning. Therefore, the purpose of this study is to investigate the usefulness of the shield fabricated using materials of FDM (Fused Deposition Modeling) 3D printer. In order to confirm the filament's line attenuation factor, phantoms were fabricated using PLA, XT-CF20, Wood, Glow and Brass, and CT scan was performed. And the shielding sheet of 100 × 100 × 2 mm size was modeled, the dose and shielding rate was measured by using a diagnostic X-ray generator and irradiation dose meter, and the shielding rate with lead protection tools. As a result of the experiment, the CT number of the brass was measured to be the highest, and the shielding sheet was manufactured by using the brass. As a result of confirming with the diagnostic X-ray generator, the shielding rate was increased in the shielding sheet having a thickness of 6 mm upon X-ray irradiation under the condition of 100 kV and 40 mAs. It measured by 90% or more, and confirmed that the shielding rate is higher than apron 0.25 mmPb. As a result of this study, it was confirmed that the shield fabricated by 3D printing technology showed high shielding rate in the diagnostic X-ray region. there was.

Usefulness Evaluation of Application of Metallic Algorithm Reducing for Beam Hardening Artifact Occur in Typical Brain CT Image (머리 CT영상에서 흔히 발생하는 선속경화인공물 감소를 위한 금속인공물감소 알고리즘 적용의 유용성 평가)

  • Kim, Hyeon ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.389-395
    • /
    • 2018
  • The study attempted to use computed tomography images to determine the usefulness of the reduction in the axial reduction algorithm in the event of a metallic artifacts reduction in the image of the beam-hardening effect, which is known as the most effective method of reducing metallic artifact reduction in the image and the reduction of the metal produced in this study. As a result, the result is increased to 140 kVp to reduce the value of the CT value by 0.02 to 0.05 %, resulting in decreased axial effect (P > 0.05). The CT value decreased from 12.4 to 26.9 % when applied to the reduction of the metallic. 12.4 to 26.9 % (p<0.05). In addition, in the qualitative assessment by the clinical trial evaluation, it was assessed as 1.8 points after applying the MAR algorithm, In the resolution of resolution and contrast evaluations, the estimation of the decrease in metallic artifact effects was assessed as the metal was assessed to be scored 7.2 points after the MAR algorithm was evaluated. Therefore, in case of artifacts due to irreversible beam hardening effect, it is useful to reduce artifacts caused by beam hardening effect by using various methods derived from existing researches and scanning by applying the metal artifact reduction algorithm proposed in this experiment.

Magnetic Resonance Imaging uses 3D Printed Material of Headset (Noise Reduction Effect) (자기공명영상 검사 시 3D 프린팅 재료를 이용한 헤드셋 연구 (소음저감 효과))

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.335-341
    • /
    • 2018
  • With the improvement of medical state, patients' expectations for the most advanced medical equipment are increasing. Particularly, Magnetic Resonance Image (MRI) is used as one of the core image diagnosis methods in all clinical area. However, it has been reported that many of patients who go through the examination suffer from anxiety to the severe noise level during the examination. In this study, both the noise reduction evaluation of headsets with sound-blocking materials added to existing sound-absorbing materials and the existence of sound blocking materials as artifacts on the examination image are tested. An MRI test noise is recorded as a speaker by cross-ordination the sound material (sponge) and the sound material (acrylic plate, copper plate, and 3D copper plate) inside the headset made from 3D pring. A quantitative assessment of headsets showed that the average headset value was 81.8 dB. The average dB value of the most soundproof material combination(Copper, acrylic plate, sponge, sponge) headsets on headsets with added charactering material was measured at 70.4 dB, and MRI showed that the copper was diamagnetic substance and excluded. The second most soundproof headset(Sponge, acrylic plate, 3D copper plate, sponge) was measured at 70.6 dB and MRI showed no artifacts. The same simulation of the material printed with a 3D copper PLA containing approximately 40 % copper powder resulted in no artifacts, therefore, the material output as a 3D printing was better suited for use. For MRI related research, the mutual development of 3D printing is highly anticipated.

Evaluation of Image Quality for Diagnostic Digital Chest Image Using Ion Chamber in the Total Mastectomy (변형근치유방절제술 환자의 Ion chamber 변화에 따른 디지털 흉부 영상의 화질 평가)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Park, Hyong-Hu;Kim, Donghyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.204-210
    • /
    • 2013
  • The patients who had been operated total mastectomy are different from general women in their breasts thickness due to breast surgery. As a result, digital chest image from total mastectomy patients will be different attenuation. The main objective for this study is to show that a proper Ion chamber standard combination measuring MTF which is objective basis for Digital image, when be x-ray for total mastectomy patient. We have designed the unique number that shown Left is 1, Right is 2, Center is 3 and have put the edge phantom on detector ion chamber. Lastly, we have obtained experiment images. The evaluations of all image quality have measured by 50% MTF of spatial resolution and absorption dose using Matlab(R2007a). The result showed that average exposure condition, MTF value, absorption dose for 1+3 and 2+3 combinations were 2.745 mAs, 1.925 lp/mm, 0.688 mGy. Consequently, that showed high MTF, DQE and low dose than other combinations. Therefore, a proper changes of ion chambers are able to improve image quality and to reduce radiation exposure when be X-ray for total mastectomy patients. Also, it will be possible to standard for application chamber combination and utilization on clinical detection.

Development of Trans-Admittance Scanner (TAS) for Breast Cancer Detection (유방암 검출을 위한 생계 어드미턴스 스캐너의 개발)

  • 이정환;오동인;이재상;우응제;서진근;권오인
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.335-342
    • /
    • 2004
  • This paper describes a trans-admittance scanner for breast cancer detection. A FPGA-based sinusoidal waveform generator produces a constant voltage. The voltage is applied between a hand-held electrode and a scan probe placed on the breast. The scan probe contains an 8x8 array of electrodes that are kept at the ground potential. Multi-channel precision digital ammeters using the phase-sensitive demodulation technique were developed to measure the exit current from each electrode in the array. Different regions of the breast are scanned by moving the probe on the breast. We could get trans-admittance images of resistor and saline phantoms with an anomaly inside. The images provided the information on the depth and location of the anomaly. In future studies, we need to improve the accuracy through a better calibration method. We plan to test the scanner's ability to detect a cancer lesion inside the human breast.

A Numerical Voxel Model for 3D-printed Uncompressed Breast Phantoms (3D 프린팅 비압박 유방 팬텀 제작을 위한 복셀 기반 수치 모델에 관한 연구)

  • Youn, Hanbean;Baek, Cheol Ha;Jeon, Hosang;Kim, Jinsung;Nam, Jiho;Lee, Jayoung;Lee, Juhye;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Won, Jong Hun;Kim, Ho Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.116-122
    • /
    • 2017
  • Physical breast phantoms would be useful for the development of a dedicated breast computed tomography (BCT) system and its optimization. While the conventional breast phantoms are available in compressed forms, which are appropriate for the mammography and digital tomosynthesis, however, the BCT requires phantoms in uncompressed forms. Although simple cylindrical plastic phantoms can be used for the development of the BCT system, they will not replace the roles of uncompressed phantoms describing breast anatomies for a better study of the BCT. In this study, we have designed a numerical voxel breast phantom accounting for the random nature of breast anatomies and applied it to the 3D printer to fabricate the uncompressed anthropomorphic breast phantom. The numerical voxel phantom mainly consists of the external skin and internal anatomies, including the ductal networks, the glandular tissues, the Cooper's ligaments, and the adipose tissues. The voxel phantom is then converted into a surface data in the STL file format by using the marching cube algorithm. Using the STL file, we obtain the skin and the glandular tissue from the 3D printer, and then assemble them. The uncompressed breast phantom is completed by filling the remaining space with oil, which mimics the adipose tissues. Since the breast phantom developed in this study is completely software-generated, we can create readily anthropomorphic phantoms accounting for diverse human breast anatomies.