• Title/Summary/Keyword: 팬텀

Search Result 913, Processing Time 0.023 seconds

A Study of Image Characteristics due to Focus-Grid and Head Phantom Decentering from the Armorphos Silicon Thin Film Transistor Detector the Fixed Focus-Grid is Applied (고정식 초점형 격자가 적용된 비정절 실리콘 평판형 검출기에서 초점-격자와 두부 팬텀의 중심 변위에 의한 화질 특성에 관한 연구)

  • Choi, Jun-Gu;Kim, Byeong-Gi;Cha, Seon-Hwa;Kim, Gyeong-Su
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2007
  • This study aim to investigate image characteristics due to focus-grid and head phantom decentering from the armorphos silicon thin film transistor detector the fixed focus-grid is applied, wish to propose right use method of digital medical equipment. Acquired image according to focus-grid and head phantom position decentering using head phantom on armorphos silicon thin film transistor detector the fixed focus-grid is applied. acquired image evaluate pixel value, histogram, plot profile, surface plot using NIB (Image J) image analysis program and compared decentering image with standard image. Mean value and standard deviation value of focus-grid lateral decentering and duplex decentering of focus-grid and head phantom decreased by ratio, consequently increase of horizontality, diagonal decentering. also, deteriorated contrast of image because frequency of high pixel value decreases fairly. according increases decentering, image distortion phenomenon was increase, by next time, pixel mean value of head phantom decentering was no big change but horizontality, diagonal, mean value and standard deviation value of pixel decreased by ratio. Even if increase pixel noise of image because wide latitude and post processing ability of digital detector, radiotechnologist can not recognize. Therefore, radiotechnologist must recognize correctly the photographing factors which increases pixel noise on the grid system installation digital detector and should exam.

  • PDF

A New Approach for the Calculation of Neutron Dose Equivalent Conversion Coefficients for PMMA Slab Phantom (PMMA 평판형 팬텀에서의 중성자 선량당량 환산계수의 새로운 계산법)

  • Kim, Jong-Kyung;Kim, Jong-Oh
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.297-311
    • /
    • 1996
  • ANSI decided PMMA slab phantom as a calibration phantom and introduced a conversion coefficient calculation method for it. For photon, the conversion coefficient can be obtained by using backscatter factor and conversion coefficient of the ICRU tissue cube and backscatter factor of the PMMA slab. For neutron, however, the ANSI has not introduced any conversion coefficient calculation method for the PMMA slab. In this work, the ANSI method for the photon conversion coefficient calculation was applied to the neutron conversion coefficient calculation of the PMMA slab. Quality weighted tissue kerma of neutron was applied to calculate the backscatter factors on the ICRU cube and the PMMA slab. The dose conversion coefficient of the ICRU cube was also calculated by using MCNP code. Then, the dose conversion coefficient of the PMMA slab was calculated from two backscatter factors and the dose conversion coefficient of the ICRU cube. The discrepancies of the dose conversion coefficients of the PMMA slab and the ICRU cube were less than 10% except 1eV(20%), 1keV(17%), and 4 MeV(16%).

  • PDF

A Fundamental Study on the Fabrication of Human Model Bone Phantom using an Entry-Level 3D Printer: using FDM Method for the Femur Model (보급형 3D 프린터를 이용한 인체 모형 뼈 팬텀 제작의 기초연구: Femur 대상으로 적층형 출력 방식 이용)

  • Namkung, Eun-Jae;Kim, Do-Hee;Kim, So-Hui;Park, Se-Eun;Jung, Dabin;Park, Sang-Hyub;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.651-660
    • /
    • 2020
  • The purpose of this study was to create a phantom with a HU value similar to that of the human Femur using a 3D printer to replace the existing pig bone. A total of 372 people were analyzed to determine the HU value of human Femur. Using a 3D printer, a human bone model phantom was fabricated using PLA-Cu 20% and subjected to CT examination. Pig bones were 6 months old pigs, and bones 2 days after slaughter were used. As a result of the examination, the 3D printing phantom made with 80% of the internal filling showed a similar value to all data of the human body (p<0.05), and there was a difference from the pig bone (p>0.05). In addition, in the case of the HU value of Femur by age group, it was confirmed that the value of HU decreased as the age group increased (p<0.05). 3D printing and HU values confirmed a weak negative correlation with respect to the stacking height, but confirmed a strong positive correlation (R2 = 0.996) with 182.13±1.290 in the inner filling (p<0.05). In conclusion, it was confirmed that the human body model phantom using 3D printing can exhibit a similar level of HU value to the human body compared to the existing pig bone phantom, and this study will provide basic data for the production of a human body model phantom using a 3D printer.

Study of Appropriate Increment during VRT Rendering before Musculoskeletal Surgery (근골격계 수술전 VRT Rendering시 적절한 increment에 대한 연구)

  • Gang, Heon-Hyo;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.675-681
    • /
    • 2019
  • The purpose of this study was to investigate the effect of increasing the amount of 3D volume imaging on the hand, knee, and foot human phantom in CT, After analyzing the data, three - dimensional volumetric images were implemented using MMWP program to evaluate reproducibility. First, the data amount of three human phantoms according to each increment was analyzed. Secondly, the reproducibility evaluation and the measured length were compared. As a result of analyzing the amount of image data for each phantom according to the increment, it was confirmed that the amount of data is reduced to about 1/10 when the increment is set to 1.0 mm as compared with the case where the increment is set to 0.1 mm. In the evaluation of the feasibility, gap was generated from 0.7mm for hand phantom, 0.6mm for knee phantom and foot phantom, and it was confirmed that even when the actual phantom and actual length were compared, the length was much different and the implementation was lowered. As the increment is closer to 1.0mm, the number of images is small and the 3D implementation time is small. Therefore, it is best to determine the increase before the gap of the image is generated and to apply the Increment for preoperative diagnosis. We hope that this study will be an indicator of the accurate increment setting when implementing 3D image through VRT Rendering after CT scan.

Evaluation of the Shielding Effect of Lead Apron according to the Energy Spectrum Change of 99mTc (99mTc의 에너지 스펙트럼 변화에 따른 납 앞치마의 차폐 효과 평가)

  • Changyong Yoon;Youngsik Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.889-896
    • /
    • 2023
  • Changes in the energy spectrum were analyzed using 99mTc as a point source and a scattering phantom, and the shielding effect of the lead apron according to the changed gamma ray energy was evaluated. In the gamma ray energy spectrum of the scattering phantom, the photo peak area decreased and the compton scattering area increased compared to the point source. The coefficients for each energy range according to the change in the shape of the gamma ray source showed a reduction rate of up to 66.1 % at a distance of 20 cm compared to the coefficient of the point source, and in the compton scattering area, the coefficient of the scattering phantom was 122.2 % at a distance of up to 40 cm compared to the coefficient of the point source. In the difference in shielding rate according to the distance between the source and the scattering phantom using a gamma camera, the photo peak area showed similar results, but in the Compton scattering area, the shielding rate of the scattering phantom at a distance of 20 cm increased by 29.2 % compared to the shielding rate of the point source. As the distance increased, the difference in shielding rate decreased. In measuring the shielding rate of the lead apron using a radiation dosimeter, the difference in the shielding rate of the scattering phantom was up to 15.3 %, and as the distance increased, the difference in the shielding rate between the two sources decreased. The shielding rate of the lead apron of the scattering phantom is higher than that of the point source, and the effectiveness of the lead apron increases as the distance to the source increases. As a result, wearing a lead apron when directly confronting a patient who has injected radioactive pharmaceuticals is expected to be helpful in reducing radiation exposure.

Observation with Calcifications of Breast Tissue Phantoms Using Acoustic Resonance (공명현상을 이용한 유방조직 팬텀의 석회화 관찰)

  • Ha, Myeung-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Diagnosis of breast ultrasound is better than mammography in the early detection of breast cancer, but, it is difficult to detect microcalcification. We studied on detection for calcification of breast tissue using acoustic resonance and power doppler with 7.5 MHz linear probe in breast ultrasound. We first constructed breast tissue phantom made of gelatin and saw breast, and then observed calcification by the change of external vibration. Calcification injected breast tissue phantom visualized the difference for brightness and region of color in ROI regions of power doppler. Acoustic resonance almost never visualized in low frequency regions, plateau constituted in about 300-400 Hz and colors vanished according to the increase of frequency.

  • PDF

Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons (MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The conversion coefficients of effective dose per unit air kerma and equivalent dose per unit fluence were calculated by MCNP4A code for antero-posterior(AP) and postero- anterior(PA) incidence of broad, unidirectional beams of photons into anthropomorphic MIRD phantom. Calculations have been performed for 20 monoenergetic photons of energy ranging from 0.03 to 10 MeV. The conversion coefficients showed a good agreement with the corresponding values given in the draft publication of joint task group of ICRP and ICRU within 10%. The deviations may arise from the differences of geometry in the MIRD phantom and the ADAM/EVE phantoms, and the differences in the codes and cross-section data used. Inclusion of a specific oesophagus model results in effective dose slightly different(5% at most) from the effective doses obtained by adopting the equivalent doses for the thymus or pancreas. Deletion of the ULI from the remainder organ appeared not to be significant for the cases of photon dosimetry covered in this study.

  • PDF

Meaning of Reality on Television -Focused on <THE WORLD AS PHANTOM AND AS MATRIX>, of Guünter Anders- (텔레비전에서 실재가 가진 의미 귄터 안더스의 <팬텀과 매트릭스로서의 세계>를 중심으로)

  • Shin, Shang-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.60-71
    • /
    • 2014
  • Images of TV that crossed the reality & the virtual reality have been discussed for a long time, Then, With what feature can TV make messages of the reality & the virtual reality maintain to achieve such a target, and in which situation will the feature be exposed? One who answered first about these questions is a German critic, G$\ddot{u}$nter Anders. Anders called the reality confused with the reality and the confused world of the virtual reality Phantom, and thought human beings would live in the reproduced world created by media machine in the long run as a world that the Phantom created would be gloomy and confusing. The media, themselves, become images, and an image creates another image. Through this process, human beings became unaware of which image the reality was indeed. As TV often created these situations, we have been already seduced into the deep Phantom world before discussing right or wrong of the situation. Of course, the media reality & the reality can't be strictly distinguished. Because the means that help to form judgement of viewers is the media. The subject of practical judgement is the media reality not human beings.

Development of Dose Verification Method for In vivo Dosimetry in External Radiotherapy (방사선치료에서 투과선량을 이용한 체내선량 검증프로그램 개발)

  • Hwang, Ui-Jung;Baek, Tae Seong;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The purpose of this study is to evaluate the developed dose verification program for in vivo dosimetry based on transit dose in radiotherapy. Five intensity modulated radiotherapy (IMRT) plans of lung cancer patients were used in the irradiation of a homogeneous solid water phantom and anthropomorphic phantom. Transit dose distribution was measured using electronic portal imaging device (EPID) and used for the calculation of in vivo dose in patient. The average passing rate compared with treatment planning system based on a gamma index with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 95% for the in vivo dose with the homogeneous phantom, but was reduced to 81.8% for the in vivo dose with the anthropomorphic phantom. This feasibility study suggested that transit dose-based in vivo dosimetry can provide information about the actual dose delivery to patients in the treatment room.

The Dependence of CT Scanning Parameters on CT Number to Physical Density Conversion for CT Image Based Radiation Treatment Planning System (CT 영상기반 방사선치료계획시스템을 위한 CT수 대 물리적 밀도 변환에 관한 CT 스캐닝 매개변수의 의존성)

  • Baek, Min Gyu;Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.501-508
    • /
    • 2017
  • The dependence of CT scanning parameters on the CT number to physical density conversion from the CT image of CT and CBCT electron density phantom acquired by the CT scanner using in radiotherapy were analyzed by experiment. The CT numbers were independent of the tube current product exposure time, slice thickness, filter of image reconstruction, field of view and volume of phantom. But the CT numbers were dependent on the tube voltage and cross section of phantom. As a result, for physical density range above 0, the maximum CT number difference observed at the tube voltage between 90 and 120 kVp was 27%, and the maximum CT number difference observed between CT body and head electron density phantom was 15%.