• Title/Summary/Keyword: 패턴 학습

Search Result 1,591, Processing Time 0.032 seconds

Electromyogram Pattern Recognition by Hierarchical Temporal Memory Learning Algorithm (시공간적 계층 메모리 학습 알고리즘을 이용한 근전도 패턴인식)

  • Sung, Moo-Joung;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper presents a new electromyogram (EMG) pattern recognition method based on the Hierarchical Temporal Memory (HTM) algorithm which is originally devised for image pattern recognition. In the modified HTM algorithm, a simplified two-level structure with spatial pooler, temporal pooler, and supervised mapper is proposed for efficient learning and classification of the EMG signals. To enhance the recognition performance, the category information is utilized not only in the supervised mapper but also in the temporal pooler. The experimental results show that the ten kinds of hand motion are successfully recognized.

The acquisition effect by measurement periods of adult learners learned through English pattern practice (영어 패턴 연습을 활용한 성인 학습자의 측정 시기별 습득 효과)

  • Choi, Kyung-Mi
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.183-189
    • /
    • 2020
  • This study was carried out to find out the acquisition effect by measurement periods of adult learners learning through English pattern practice. The subjects of this study were divided into adult learner groups including the learners in their 40s and those who were over 65 and the child group who were 8 years old as a comparative group. After the subjects had a pre-test at first, person agreement and tense were instructed though English pattern practice and right after that, they had a post-test. Then 4 weeks later, they had a delayed test. As a result, the acquisition result of adult learners learning though English pattern practice showed the largest rise by those in their 40s and the learners of those over 65. However the adult learners aged over 65 showed the largest drop in delayed test of the reading comprehension. Based on these results, it is necessary to develop teaching method for adult learners in consideration of their characters and weak points.

A study on the 6th graders' learning algebra through generalization of mathematical patterns (초등학교 6학년의 패턴의 일반화를 통한 대수 학습에 관한 연구)

  • Kim, Nam-Gyun;Lee, Eun-Suk
    • Communications of Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.399-428
    • /
    • 2009
  • 2007 Renewed Korea Elementary Mathematics Curriculum introduce algebra 6th grade. According to many studies about introducing algebra, it is desirable to teach 6th graders algebra through generalization of patterns. In this study, 6th graders' understanding processes and difficulties in pattern generalization were analyzed and possiblities of introducing algebra to 6th graders through pattern generalization were examined.

  • PDF

Inconsistent Pattern Model for Improving the Performance of Supervised Learning in Data Mining (데이터 마이닝의 지도학습 기법 성능향상을 위한 불일치 패턴 모델)

  • Heo, Jun;Kim, Jong-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.288-305
    • /
    • 2007
  • 본 논문은 데이터 마이닝의 기법 중 가장 잘 알려진 지도학습 기법의 성능 향상을 위한 새로운 Hybrid 및 Combined 기법인 불일치 패턴 모델(오차 패턴 모델)에 대한 연구 논문이다. 불일치 패턴 모델이란 2개 이상의 기법 중 향후 더 레코드별로 더 잘 맞출 수 있는 기법을 메타 분류하는 불일치 패턴 모델을 개발하여, 최종적으로는 기존의 기법보다 더 좋은 분류 정확도 및 예측 향상율을 기대하기 위한 기법을 의미한다. 본 논문에서는 의사 결정나무 추론 기법인 C5.0과 C&RT 그리고 신경망 분석, 그리고 로지스틱 회귀분석과 같은 대표적인 데이터 마이닝의 지도학습 기법을 이용하여 불일치 패턴 모델을 생성하여 보고, 이들이 기존 단일 기법과 기존의 Combined 모델인 Bagging, Boosting 그리고 Stacking 기법보다 성능이 우수함을 23개의 실제 데이터 및 공신력 있는 공개 데이터를 이용하여 증명하여 보였다. 또한 데이터의 특성에 따라서 불일치 패턴 모델의 성능의 변화 및 더 우수해 지는지를 알아보기 위한 연구포 같이 수행을 하여 본 모델의 활용성을 높이고자 하였다.

  • PDF

A Design of Hierarchical Gaussian ARTMAP using Different Metric Generation for Each Level (계층별 메트릭 생성을 이용한 계층적 Gaussian ARTMAP의 설계)

  • Choi, Tea-Hun;Lim, Sung-Kil;Lee, Hyon-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.633-641
    • /
    • 2009
  • In this paper, we proposed a new pattern classifier which can be incrementally learned, be added new class in learning time, and handle with analog data. Proposed pattern classifier has hierarchical structure and the classification rate is improved by using different metric for each levels. Proposed model is based on the Gaussian ARTMAP which is an artificial neural network model for the pattern classification. We hierarchically constructed the Gaussian ARTMAP and proposed the Principal Component Emphasis(P.C.E) method to be learned different features in each levels. And we defined new metric based on the P.C.E. P.C.E is a method that discards dimensions whose variation are small, that represents common attributes in the class. And remains dimensions whose variation are large. In the learning process, if input pattern is misclassified, P.C.E are performed and the modified pattern is learned in sub network. Experimental results indicate that Hierarchical Gaussian ARTMAP yield better classification result than the other pattern recognition algorithms on variable data set including real applicable problem.

Semiautomatic Pattern Mining for Training a Relation Extraction Model (관계추출 모델 학습을 위한 반자동 패턴 마이닝)

  • Choi, GyuHyeon;nam, Sangha;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.257-262
    • /
    • 2016
  • 본 논문은 비구조적인 자연어 문장으로부터 두 개체 사이의 관계를 표현하는 구조적인 트리플을 밝히는 관계추출에 관한 연구를 기술한다. 사람이 직접 언어적 분석을 통해 트리플이 표현되는 형식을 입력하여 관계를 추출하는 규칙 기반 접근법에 비해 기계가 데이터로부터 표현 형식을 학습하는 기계학습 기반 접근법은 더 다양한 표현 형식을 확보할 수 있다. 기계학습을 이용하려면 모델을 훈련하기 위한 학습 데이터가 필요한데 학습 데이터가 수집되는 방식에 따라 지도 학습, 원격지도 학습 등으로 구분할 수 있다. 지도 학습은 사람이 학습 데이터를 만들어야하므로 사람의 노력이 많이 필요한 단점이 있지만 양질의 데이터를 사용하는 만큼 고성능의 관계추출 모델을 만들기 용이하다. 원격지도 학습은 사람의 노력을 필요로 하지 않고 학습 데이터를 만들 수 있지만 데이터의 질이 떨어지는 만큼 높은 관계추출 모델의 성능을 기대하기 어렵다. 본 연구는 기계학습을 통해 관계추출 모델을 훈련하는데 있어 지도 학습과 원격지도 학습이 가지는 단점을 서로 보완하여 타협점을 제시하는 학습 방법을 제안한다.

  • PDF

Semiautomatic Pattern Mining for Training a Relation Extraction Model (관계추출 모델 학습을 위한 반자동 패턴 마이닝)

  • Choi, GyuHyeon;nam, Sangha;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.257-262
    • /
    • 2016
  • 본 논문은 비구조적인 자연어 문장으로부터 두 개체 사이의 관계를 표현하는 구조적인 트리플을 밝히는 관계추출에 관한 연구를 기술한다. 사람이 직접 언어적 분석을 통해 트리플이 표현되는 형식을 입력하여 관계를 추출하는 규칙 기반 접근법에 비해 기계가 데이터로부터 표현 형식을 학습하는 기계학습 기반 접근법은 더 다양한 표현 형식을 확보할 수 있다. 기계학습을 이용하려면 모델을 훈련하기 위한 학습 데이터가 필요한데 학습 데이터가 수집되는 방식에 따라 지도 학습, 원격지도 학습 등으로 구분할 수 있다. 지도 학습은 사람이 학습 데이터를 만들어야하므로 사람의 노력이 많이 필요한 단점이 있지만 양질의 데이터를 사용하는 만큼 고성능의 관계추출 모델을 만들기 용이하다. 원격지도 학습은 사람의 노력을 필요로 하지 않고 학습 데이터를 만들 수 있지만 데이터의 질이 떨어지는 만큼 높은 관계추출 모델의 성능을 기대하기 어렵다. 본 연구는 기계학습을 통해 관계추출 모델을 훈련하는데 있어 지도 학습과 원격지도 학습이 가지는 단점을 서로 보완하여 타협점을 제시하는 학습 방법을 제안한다.

  • PDF

Binary Neural Network in Binary Space using NETLA (NETLA를 이용한 이진 공간내의 패턴분류)

  • Sung, Sang-Kyu;Park, Doo-Hwan;Jeong, Jong-Won;Lee, Joo-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.431-434
    • /
    • 2001
  • 단층 퍼셉트론이 처음 개발되었을 때, 간단한 패턴을 인식하는 학습 기능을 가지고 있기 장점 때문에 학자들의 관심을 끌었다. 단층 퍼셉트론은 한 개의 소자를 이용해서 이진 논리를 가중치(weight)의 변경만으로 모두 표현할 수 있는 장점 때문에 영상처리, 패턴인식, 장면인식 등에 이용되어 왔다. 최근에, 역전파학습(Back-Propagation Learning)알고리즘이 이진 공간내의 매핑 문제에 적용되고 있다. 그러나, 역전파 학습알고리즘은 연속공간 내에서 긴 학습시간과 비효율적인 수행의 문제를 가지고 있다. 일반적으로 역전파 학습 알고리즘은 간단한 이진 공간에서 매핑하기 위해서 많은 반복과정을 요구한다. 역전파 학습 알고리즘에서는 은닉층의 뉴런의 수는 주어진 문제를 해결하기 위해서 우선순위(prior)를 알지 못하기 때문에 입력층과 출력층내의 뉴런의 수에 의존한다. 따라서, 3층 신경회로망의 적용에 있어 가장 중요한 문제중의 하나는 은닉층내의 필요한 뉴런수를 결정하는 것이고, 회로망 합성과 가중치 결정에 대한 적절한 방법을 찾지 못해 실제로 그 사용 영역이 한정되어 있었다. 본 논문에서는 패턴 분류를 위한 새로운 학습방법을 제시한다. 훈련입력의 기하학적인 분석에 기반을 둔 이진 신경회로망내의 은닉층내의 뉴런의 수를 자동적으로 결정할 수 있는 NETLA(Newly Expand and Truncate Learning Algorithm)라 불리우는 기하학적 학습알고리즘을 제시하고, 시뮬레이션을 통하여, 제안한 알고리즘의 우수성을 증명한다.

  • PDF

The Research of Shape Recognition Algorithm for Image Processing of Cucumber Harvest Robot (오이수확로봇의 영상처리를 위한 형상인식 알고리즘에 관한 연구)

  • Min, Byeong-Ro;Lim, Ki-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • Pattern recognition of a cucumber were conducted to detect directly the binary images by using thresholding method, which have the threshold level at the optimum intensity value. By restricting conditions of learning pattern, output patterns could be extracted from the same and similar input patterns by the algorithm. The algorithm of pattern recognition was developed to determine the position of the cucumber from a real image within working condition. The algorithm, designed and developed for this project, learned two, three or four learning pattern, and each learning pattern applied it to twenty sample patterns. The restored success rate of output pattern to sample pattern form two, three or four learning pattern was 65.0%, 45.0%, 12.5% respectively. The more number of learning pattern had, the more number of different out pattern detected when it was conversed. Detection of feature pattern of cucumber was processed by using auto scanning with real image of 30 by 30 pixel. The computing times required to execute the processing time of cucumber recognition took 0.5 to 1 second. Also, five real images tested, false pattern to the learning pattern is found that it has an elimination rate which is range from 96 to 98%. Some output patterns was recognized as a cucumber by the algorithm with the conditions. the rate of false recognition was range from 0.1 to 4.2%.

Feed-forward Learning Algorithm by Generalized Clustering Network (Generalized Clustering Network를 이용한 전방향 학습 알고리즘)

  • Min, Jun-Yeong;Jo, Hyeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.5
    • /
    • pp.619-625
    • /
    • 1995
  • This paper constructs a feed-forward learning complex algorithm which replaced by the backpropagation learning. This algorithm first attempts to organize the pattern vectors into clusters by Generalized Learning Vector Quantization(GLVQ) clustering algorithm(Nikhil R. Pal et al, 1993), second, regroup the pattern vectors belonging to different clusters, and the last, recognize into regrouping pattern vectors by single layer perceptron. Because this algorithm is feed-forward learning algorithm, time is less than backpropagation algorithm and the recognition rate is increased. We use 250 ASCII code bit patterns that is normalized to 16$\times$8. As experimental results, when 250 patterns devide by 10 clusters, average iteration of each cluster is 94.7, and recognition rate is 100%.

  • PDF