• Title/Summary/Keyword: 패턴 추출 학습

Search Result 410, Processing Time 0.032 seconds

Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy (인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Seok-Ki;Park, Kwang-Suk;Lee, Sang-Kun;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Purpose: We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). Materials and Methods: We studied brain F-18-FDG PET images of 113 epilepsy patients sugically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptrons (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 51 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. Results: The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). Conclusion: We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

A Generalized Adaptive Deep Latent Factor Recommendation Model (일반화 적응 심층 잠재요인 추천모형)

  • Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.249-263
    • /
    • 2023
  • Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.

Invariant Classification and Detection for Cloth Searching (의류 검색용 회전 및 스케일 불변 이미지 분류 및 검색 기술)

  • Hwang, Inseong;Cho, Beobkeun;Jeon, Seungwoo;Choe, Yunsik
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.396-404
    • /
    • 2014
  • The field of searching clothing, which is very difficult due to the nature of the informal sector, has been in an effort to reduce the recognition error and computational complexity. However, there is no concrete examples of the whole progress of learning and recognizing for cloth, and the related technologies are still showing many limitations. In this paper, the whole process including identifying both the person and cloth in an image and analyzing both its color and texture pattern is specifically shown for classification. Especially, deformable search descriptor, LBPROT_35 is proposed for identifying the pattern of clothing. The proposed method is scale and rotation invariant, so we can obtain even higher detection rate even though the scale and angle of the image changes. In addition, the color classifier with the color space quantization is proposed not to loose color similarity. In simulation, we build database by training a total of 810 images from the clothing images on the internet, and test some of them. As a result, the proposed method shows a good performance as it has 94.4% matching rate while the former Dense-SIFT method has 63.9%.

Predicting The Direction of The Daily KOSPI Movement Using Neural Networks For ETF Trades (신경회로망을 이용한 일별 KOSPI 이동 방향 예측에 의한 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2019
  • Neural networks have been used to predict the direction of stock index movement from past data. The conventional research that predicts the upward or downward movement of the stock index predicts a rise or fall even with small changes in the index. It is highly likely that losses will occur when trading ETFs by use of the prediction. In this paper, a neural network model that predicts the movement direction of the daily KOrea composite Stock Price Index (KOSPI) to reduce ETF trading losses and earn more than a certain amount per trading is presented. The proposed model has outputs that represent rising (change rate in index ${\geq}{\alpha}$), falling (change rate ${\leq}-{\alpha}$) and neutral ($-{\alpha}$ change rate < ${\alpha}$). If the forecast is rising, buy the Leveraged Exchange Traded Fund (ETF); if it is falling, buy the inverse ETF. The hit ratio (HR) of PNN1 implemented in this paper is 0.720 and 0.616 in the learning and the evaluation respectively. ETF trading yields a yield of 8.386 to 16.324 %. The proposed models show the better ETF trading success rate and yield than the neural network models predicting KOSPI.

The Accuracy Assessment of Species Classification according to Spatial Resolution of Satellite Image Dataset Based on Deep Learning Model (딥러닝 모델 기반 위성영상 데이터세트 공간 해상도에 따른 수종분류 정확도 평가)

  • Park, Jeongmook;Sim, Woodam;Kim, Kyoungmin;Lim, Joongbin;Lee, Jung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1407-1422
    • /
    • 2022
  • This study was conducted to classify tree species and assess the classification accuracy, using SE-Inception, a classification-based deep learning model. The input images of the dataset used Worldview-3 and GeoEye-1 images, and the size of the input images was divided into 10 × 10 m, 30 × 30 m, and 50 × 50 m to compare and evaluate the accuracy of classification of tree species. The label data was divided into five tree species (Pinus densiflora, Pinus koraiensis, Larix kaempferi, Abies holophylla Maxim. and Quercus) by visually interpreting the divided image, and then labeling was performed manually. The dataset constructed a total of 2,429 images, of which about 85% was used as learning data and about 15% as verification data. As a result of classification using the deep learning model, the overall accuracy of up to 78% was achieved when using the Worldview-3 image, the accuracy of up to 84% when using the GeoEye-1 image, and the classification accuracy was high performance. In particular, Quercus showed high accuracy of more than 85% in F1 regardless of the input image size, but trees with similar spectral characteristics such as Pinus densiflora and Pinus koraiensis had many errors. Therefore, there may be limitations in extracting feature amount only with spectral information of satellite images, and classification accuracy may be improved by using images containing various pattern information such as vegetation index and Gray-Level Co-occurrence Matrix (GLCM).

Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques (다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구)

  • Park, Kyungseon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.449-456
    • /
    • 2021
  • An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.

Implementation of Urinalysis Service Application based on MobileNetV3 (MobileNetV3 기반 요검사 서비스 어플리케이션 구현)

  • Gi-Jo Park;Seung-Hwan Choi;Kyung-Seok Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • Human urine is a process of excreting waste products in the blood, and it is easy to collect and contains various substances. Urinalysis is used to check for diseases, health conditions, and urinary tract infections. There are three methods of urinalysis: physical property test, chemical test, and microscopic test, and chemical test results can be easily confirmed using urine test strips. A variety of items can be tested on the urine test strip, through which various diseases can be identified. Recently, with the spread of smart phones, research on reading urine test strips using smart phones is being conducted. There is a method of detecting and reading the color change of a urine test strip using a smartphone. This method uses the RGB values and the color difference formula to discriminate. However, there is a problem in that accuracy is lowered due to various environmental factors. This paper applies a deep learning model to solve this problem. In particular, color discrimination of a urine test strip is improved in a smartphone using a lightweight CNN (Convolutional Neural Networks) model. CNN is a useful model for image recognition and pattern finding, and a lightweight version is also available. Through this, it is possible to operate a deep learning model on a smartphone and extract accurate urine test results. Urine test strips were taken in various environments to prepare deep learning model training images, and a urine test service application was designed using MobileNet V3.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

An Exploratory Study on the Status of and Demand for Higher Education Programs in Fashion in Myanmar (미얀마의 패션 고등교육 현황과 수요에 대한 탐색적 연구)

  • Kang, Min-Kyung;Jin, Byoungho Ellie;Cho, Ahra;Lee, Hyojeong;Lee, Jaeil;Lee, Yoon-Jung
    • Journal of Korean Home Economics Education Association
    • /
    • v.34 no.3
    • /
    • pp.1-23
    • /
    • 2022
  • This study examined the perceptions of Myanmar university students and professors regarding the status and necessity of higher education programs in fashion. Data were collected from professors in textile engineering at Yangon Technological University and Myanmar university students. Closed- and open-ended questions were asked either through interviews or by email. The responses were analyzed using keyword extraction and categorization, and descriptive statistics(closed questions). Generally, the professors perceived higher education, as well as the cultural industries including art and fashion, as important for Myanmar's social and economic development. According to the students interests in pursuing a degree in textile were limited, despite the high interest in fashion. Low wages in the apparel industry and lack of fashion degrees that meet the demand of students were cited as reasons. The demand was high for educational programs in fashion product development, fashion design, pattern-making, fashion marketing, branding, management, costume history, and cultural studies. Students expected to find their future career in textiles and clothing factories. Many students wanted to be hired by global fashion brands for higher salaries and training for advanced knowledge and technical skills. They perceived advanced fashion education programs will have various positive effects on Myanmar's national economy.

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.